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1. Introduction 
The integration of Artificial Intelligence (AI) across diverse 
domains has witnessed a significant surge in recent years, 
leading to groundbreaking advancements in image 
recognition, natural language processing, autonomous 
vehicles, and malware detection. Notably, the geosciences 
field has seen substantial progress in incorporating AI 
methodologies, particularly in addressing traditional 
challenges such as the identification of rocks and minerals. 
This fusion of AI with conventional geological research is 
paving the way for novel solutions and innovative approaches 
to longstanding issues. Conventional mineral identification 
techniques frequently demand considerable resources, 
including time, energy, and specialized equipment, to achieve 
precise results. Although early experiments have shown 
promise for intelligent mineral identification using Artificial 
Intelligence (AI), its adoption and progress have been slow 
due to implementation challenges. However, recent 
advancements in AI, such as improvements in deep learning 
and the availability of more user-friendly toolkits, have 
renewed interest in AI among geoscientists. Addressing the 
obstacles associated with applying AI methods to mineral 
identification is crucial for unlocking the full potential of this 
technology and fostering future advancements in the field. 

The resurgence of interest in Artificial Intelligence (AI) 
among geoscientists can be attributed to recent progress in 
deep learning techniques and the accessibility of user-friendly 
toolkits. This renewed attention has led to a surge in studies 
focused on mineral identification – a critical aspect of mineral 
selection, exploration, separation, and archaeological artifact 
preservation. A prime example showcasing the significance 
of mineral identification is granite, a widely used material for 
monuments. In conservation activities like laser cleaning, the 
accurate identification of surface mineral deposits is essential 
for preserving these structures. As AI continues to advance, 
its 
potential applications in geoscience, particularly for mineral 
identification, are expected to grow, ultimately contributing 
to more effective preservation strategies and a deeper 
understanding of our geological environment. Addressing the 
varying effects of minerals on granite can enhance processing 
techniques and prevent potential damage. This study provides 
an overview of Artificial Intelligence (AI)-driven intelligent 
mineral identification methods and introduces a novel 
classification of these approaches. By employing 
visualization techniques to examine development trends, the 
research enables mineral researchers to quickly discern 
appropriate discriminative routes and methods for diverse 
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scenarios. As AI technology continues to advance, its 
integration into mineral identification processes will likely 
yield more precise and efficient techniques, ultimately 
benefiting geological research and conservation efforts. This 
paper serves as a valuable resource for researchers seeking to 
leverage AI's potential in addressing various geological 
challenges and furthering our understanding of Earth's 
complex mineral compositions. By doing so, they can 
effectively address challenges in different settings and 
optimize mineral identification processes. This research aims 
to help AI researchers better understand current applications 
and identify potential challenges in developing AI 
technologies for intelligent mineral identification. The 
identification of mineral species is critical, with two primary 
approaches: Expert Systems: Computer programs simulating 
human experts for domain-specific problem-solving. Mineral 
identification expert systems contain specialized knowledge 
but are beyond this paper's scopeHata! Başvuru kaynağı 
bulunamadı..  Artificial Intelligence Methods: The focus of 
this paper, is on AI techniques that offer promising solutions 
for challenges in traditional mineral identification. 
Identification method based on artificial intelligence model: 
This paper focuses on an AI-based mineral 
identification method that develops models using large 
amounts of mineral data. These models learn to identify 
minerals directly from the data and can recognize minerals 
not previously present in the system, improving identification 
accuracy. Key aspects of this approach include Model 
Development: Using AI and large mineral datasets to create 
models for mineral identification. Data Input: Feeding 
mineral data into the model for category discrimination. 
Model Learning: The AI-driven model "learns" from mineral 
data, enhancing its identification capabilities. Accuracy 
Enhancement: This AI-based method can effectively identify 
minerals not existing in the system, greatly improving 
identification accuracy and contributing to the advancement 
of mineral identification techniques. In recent years, the 
model identification method has gained popularity among 
researchers for intelligent mineral identification in geological 
studies. AI-driven intelligent mineral identification has seen 
significant progress and growing interest from researchers. 
By learning characteristic patterns of mineral samples, AI-
based methods have simplified and improved the mineral 
identification process. Traditional manual identification 
methods, while simple and cost-effective, suffer from low 
accuracy, time-consuming processes, and require expert 
knowledge. Data-based identification methods like X-ray 
diffraction, electron microprobe, and Raman spectroscopy 
improve accuracy but still demand advanced instrumentation 
and identification knowledge. AI-based intelligent mineral 
identification methods provide solutions for handling big data 
and various data types while achieving high accuracy. These 
methods significantly reduce labor consumption during the 
identification process and enable accurate identification of 
simpler data types, such as photo-type data of ores. This 
reduces the reliance on specialized instruments for data 
acquisition. Some notable photo-type data-based mineral 
identification methods include: [14]: Rock and thin sections 
were segmented using Goodchild and Fuente’s edge detection 
algorithm. A three-layered feedforward neural network with 
backpropagation error correction and a genetic algorithm was 
employed to find near-optimal solutions. [15]: Captured 

images were median-filtered for noise reduction and 
histogram-equalized for contrast enhancement. Adaptive 
thresh holding segmented rock and mineral images, followed 
by extraction of 11 shape-based features for classification 
using an artificial neural network. [16]: Researchers acquired 
images and marked random points on them, recording each 
point's position (XY coordinates) and classification. Pattern 
recognition methods (NN, KNN) and artificial neural network 
algorithms (multilayer perceptron—MLP) were used to 
define a multidimensional feature space for the automatic 
classification of structures. These studies demonstrate the 
potential of AI-based methods in improving mineral 
identification using photo-type data, reducing the need for 
specialized instruments, and simplifying the identification 
process. In the first set of experiments, RGB pixel values 
were used. The second series of experiments converted RGB 
images to HSV space for better alignment with human color 
perception. A feedforward MLPNN with a backpropagation 
training algorithm was employed, utilizing a tangent sigmoid 
activation function in the hidden layer and a logarithmic 
sigmoid function in the output layer. The neural network was 
implemented using MATLAB's neural network toolbox. [16] 
collected images and marked random points on them, 
recording 
 
 each point's position (XY coordinates) and classification 
Pattern recognition methods (NN, KNN) and artificial neural 
network algorithms (multilayer perceptron—MLP) were 
employed to establish a multidimensional feature space for 
automatic classification of structures. These experiments 
showcase the potential of AI-based methods in improving 
mineral identification using photo-type data, ultimately 
simplifying the identification process and reducing reliance 
on specialized instruments. A feedforward [17] gathered 
sample image sets and processed them using photo-editing 
software for uniform adjustment, image segmentation, and 
annotation. Data enhancement techniques like mirror flipping 
and random cropping were applied to the images. A custom 
Unit convolutional neural network model was designed using 
Tensor Flow to extract deep feature information and enable 
intelligent recognition and classification of ore minerals. [18] 
collected large, diverse datasets and enhanced them through 
data augmentation techniques, including image flipping and 
scale transformation. ResNet-18 was chosen as the 
convolutional neural network, and SGD was used as the 
optimizer for implementing a deep-learning-based intelligent 
mineral recognition method. [19] selected important and 
common rock and mineral images, extracted internal square 
slices from raw images, and expanded the dataset with 
techniques like image flipping and rotation. The ResNet-50 
model served as the base model, and a Python- and HTML5-
based rock and mineral intelligence recognition tool was 
developed. This tool employs a clouded service model with 
front-end service for the user's browser and back-end service 
for the cloud server. These studies demonstrate the potential 
of AI-driven methods in enhancing mineral identification 
processes, making them more efficient and accurate. This 
paper attempts to introduce the research advances in this field, 
analyze the research methods and basic paths of identification 
of minerals based on artificial intelligence, show the existing 
specific research works, summarize these works, and provide 
an outlook on the research in this field in an attempt to provide 
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a reference for scholars to carry out relevant research. In this 
paper, artificial intelligence-based mineral identification 
models are classified into three categories. (1) Artificial 
neural network. Mineral identification models based on 
artificial neural networks are accurate and have a potential 
advantage over other methods when, for example, Raman 
spectroscopy datasets are used for mineral identification, 
without the need to remove fluorescence. However, artificial 
neural networks require too much mineral expertise and 
experience to avoid overtraining and undertraining. (2) 
Machine learning. In this paper, machine learning is divided 
into statistical-based machine learning and rule-based 
machine learning. The model is given the ability to identify 
minerals in the process of training the model. In the process 
of training the model, certain rules are adopted to improve 
efficiency by influencing the training of the model i.e., rule-
based machine learning. Statistical-based machine learning, 
on the other hand, requires little mineral expertise, relies 
mainly on the quality of the dataset, and requires large 
amounts of data for training. (3) Deep learning. The 
emergence of deep learning breaks the deadlock of artificial 
intelligence and is an extension of artificial neural networks. 
Deep learning models have deeper hidden layers to achieve 
results that are as close to reality as possible; so, deep learning 
has more learning power and better performance. Deep 
learning models rely heavily on data, with larger datasets 
generally leading to improved accuracy. 

This is due to their capacity for nonlinear function mapping, 
enabling them to recognize complex patterns within data. As 
data availability and computing power increase, the potential 
of deep learning models for mineral identification grows. 
Addressing data quality, bias, and interpretability is essential 
for fully leveraging these models in geoscience. Research on 
AI-driven mineral identification methods has gained attention 
in scholarly literature, with a focus on three main approaches. 
Keyword detection analysis identified key research areas and 
trends for each method, revealing a shared goal of achieving 
accurate identification results across diverse scenarios. 
Ongoing collaboration between geoscience and AI experts 
will likely lead to further progress in mineral identification 
techniques. 

2. Fundamentals  
2.1. Process of Intelligent Mineral Identification 

The intelligent identification of minerals involves a 
consistent, four-stage process: (1) Dataset Acquisition. 
Instruments are used to gather mineral data, such as images 
and physical properties. Multi-image photographs, 
microscopic images of thin sections, and spectral images are 
important datasets for intelligent identification. (2) Dataset 
Preprocessing. Preprocessing techniques, like partitioning 
SEM images, dimensionality reduction, and noise reduction, 
are applied to improve the accuracy of the classifier. (3) 
Model Training. AI is used to train the mineral identification 
model. Despite the relatively short development of AI, 
significant milestones have been achieved in intelligent 
mineral identification. (4) Model Validation. The model 
discriminates the data to determine the mineral category. 
Various discriminative models are used based on different 
mineral datasets, resulting in a wide range of accuracy rates.  

2.2.1. Artificial Neural Network (ANN) 

In AI-driven research, ANNs have demonstrated their 
potential in various fields, thanks to their ability to 
approximate complex functions. By optimizing the weights 
of each layer, researchers can fine-tune these models for 
specific applications. The activation function's role in 
facilitating universal approximation ensures ANNs' 
continued relevance in cutting-edge AI research. 

2.2.2. Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are deep-structured 
feedforward neural networks, that serve as key deep learning 
algorithms. Developed since the 20th century, CNNs excel in 
image recognition and object detection. Their unique ability 
to process grid-like data through convolution and pooling 
operations sets them apart from traditional neural networks. 
CNNs continue to be instrumental in AI-driven research 
across various domains. CNNs have evolved from early 
models like time-delay networks and LeNet-5. Technological 
progress and deep learning theory have led to their application 
in fields like natural language processing and computer 
vision. CNNs work by using convolutional kernels to extract 
spatial features from images, adjusting parameters through 
the backpropagation algorithm, and creating models that 
effectively process image information. CNNs comprise five 
main layers: input, convolutional, pooling, fully connected, 
and output. Their adaptability and efficacy make CNNs 
essential tools for AI-driven research, particularly in image-
related tasks. 

Input Layer: As convolutional neural networks use gradient 
descent algorithms for learning, their input data need to be 
normalized, which can effectively improve the learning 
efficiency of convolutional neural networks.  

Hidden Layer: The hidden layer of the convolutional neural 
network mainly includes the convolutional layer, pooling 
layer, and fully connected layer. Among them, the 
convolutional layer is mainly used to extract the features of 
the image, the pooling layer is mainly used for feature 
selection and information filtering, and the fully connected 
layer is mainly used for classification.  

Convolutional Layer: As the central layer of the 
convolutional neural network, the convolutional layer 
extracts different features of the input data by convolutional 
operations, and it also reduces the number of parameters to 
prevent overfitting caused by too many parameters. The 
convolutional layer can have multiple convolutional kernels, 
and each element of each convolutional kernel also has 
corresponding weight coefficients and deviations. When the 
convolutional kernel slides to each position, it operates with 
the input image and projects the information in its field of 
perception onto the feature map. The parameters of the 
convolution layer mainly consist of the convolution kernel 
size, padding, and step size. The size of the convolution 
kernel needs to be smaller than the size of the input image, 
and as the convolution kernel gets larger, the input features 
that can be extracted become more and more complex. The 
padding process is to artificially increases the size of the 
feature map before it passes through the convolution kernel 
to counteract the negative effects of size shrinkage during the 
computation. The step size of the convolution mainly defines 
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the distance between two adjacent positions of the 
convolution kernel during the scanning of the feature map. 
When its value is 1, the convolution kernel scans every 
element of the entire feature map; when its value is n, it skips 
n-1 pixels after each scan to continue scanning. The 
dimensionality of the convolution layer can be calculated 
from the filter of size (K1, K2, C), the input image of fixed 
size (H, W, C), the step size Zs, and the number of zero 
padding Zp. The calculation formula is as follows: 

Dimc (H 1, W 1, D 1) =  (H + 2Zp − k1 + 1) , (W + 2Zp − k2+ 1)
                                Zs                              Zs 

(1) 

The convolutional layer usually has an activation layer, which 
is usually combined with the convolutional layer and called 
the “convolutional layer”. The activation layer is a nonlinear 
mapping of the output of the convolutional layer, and the 
activation function used is usually the ReLU function. 

 Pooling Layer: The pooling layer is in the middle of the 
successive convolutional layers, which is mainly used for 
feature selection and information filtering. Feature selection 
is mainly used to reduce the number of training parameters, 
thus reducing the dimensionality of the output feature vector 
of the convolutional layer, while information filtering is 
performed to retain only useful information, to reduce The 
two main pooling methods are Max Pooling, which picks the 
maximum value of the sliding window, and Average Pooling, 
which picks the average value of the sliding window. The 
dimensionality of the pooling layer can be calculated as;  

 

 

Dimp(H2, W2, D2) = H1 − k + 1, W1 − k + 1, Dn (2) 

                              Zs                   Zs 

Fully Connected Layer: The fully connected layer is located 
in the last part of the implicit layer of the convolutional neural 
network and only passes signals to the other fully connected 
layers. The role of the fully connected layer is to perform a 
nonlinear combination of the extracted features to obtain the 
output for classification, i.e., the features obtained from the 
convolutional and pooling layers are classified by the fully 
connected layer mainly obtains the weight of each neuron 
feedback based on the weights, and then adjusts the weights 
and the network to obtain the final classification results. 
Output Layer: The output layer has a loss function similar to 
the categorical cross-entropy, which is used to calculate the 
error of the prediction. Once the forward propagation is 
completed, the backward propagation starts updating the 
weights and biases to reduce errors and losses. For image 
classification problems, the output layer uses a logistic 
function or a normalized exponential function to output the 
classified labels. For the image semantic segmentation 
problem, the output layer can directly output the classification 
results for each pixel. function or a normalized exponential 
function to output the classified labels. For the image 
semantic segmentation problem, the output layer can directly 
output the classification results for each pixel. 

 

 
Figure 1. The structure of a CNN network is shown in the 

following  

4. Utilizing AI for Automated Mineral 
Classification 
The progression of artificial intelligence, propelled by the 
central role of machine learning, is poised to catalyze a fresh 
era of industrial and technological innovation. By discerning 
complex patterns and relationships from empirical data, 
machine learning empowers the extraction of latent insights, 
thus promoting the ability to draw inferences and drive 
informed decision-making. Over the years, scientists have 
leveraged machine learning techniques in attempts to address 
the challenge of intelligent rock and mineral identification. 
Although initial experimental outcomes suggest potential in 
utilizing machine learning for this purpose, widespread 
adoption of these methods for intelligent mineral 
identification has been gradual. Recent rapid advancements, 
including significant progress in deep learning techniques and 
the development of increasingly accessible and user-friendly 
toolkits, have rekindled geoscientists' interest in machine 
learning. Consequently, an expanding array of exploratory 
studies centered on intelligent mineral identification methods 
has surfaced. This paper aims to provide a concise overview 
of machine learning methodologies employed in intelligent 
mineral identification. By offering this resource, we aspire to 
enable mineral researchers to swiftly discern the distinct 
approaches and techniques available for implementation and 
to discover the most effective solutions across various 
scenarios.  Moreover, we aim to help machine learning 
researchers comprehend the diverse scenarios where existing 
methods are applied, thereby identifying possible issues and 
challenges that may emerge due to advancements in the field. 
This paper classifies artificial intelligence techniques for 
intelligent mineral identification into three primary 
categories: artificial neural networks, machine learning, and 
deep learning. Machine learning is further subdivided into 
statistical-based and rule-based machine learning, as depicted 
in Table 1. Mineral identification primarily employs rule-
based machine learning techniques, which involve using 
accessible training data class labels (classification) or target 
predicted values (regression) to generate models for 
anticipating new observation classes or values. Intelligent 
mineral identification employs several key machine learning 
techniques: principal component analysis (PCA), partial least 
squares regression (PLS), decision trees, random forests (RF), 
and distance metric models. PCA reduces data complexity 
while preserving vital information, while PLS manages 
highly correlated variables in mineral exploration. Decision 
trees and random forests classify and predict using tree-like 
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structures. Lastly, distance metric models evaluate mineral 
sample similarity based on a defined distance measurement.  

 

4.1. Artificial Neural Network 

Artificial Neural Networks (ANNs) consist of multiple 
interconnected simple processing units, mimic key 
characteristics of the human brain or biological neural 
networks. Neural network theory contributes fresh 
perspectives to machine learning research and has proven 
effective in intelligent mineral identification applications. 
Artificial neural networks excel over decision tree classifiers 
for mineral species identification by drawing out data features 
and emulating biological neural networks. They yield an 
average accuracy of 83% for group-based mineral 
classification and 73% for individual mineral classification. 
This technique is advantageous when using Raman 
spectroscopy for mineral identification, as it eliminates the 
need for fluorescence removal and even improves 
classification performance with its presence. However, ANN 
implementation necessitates user expertise to avoid 
overtraining and undertraining issues. Additionally, ANNs 
require retraining for data from different spectrometers due to 
variations in noise, background/fluorescence levels, Raman 
peak line shape, and spectrometer resolution, which can be a 
significant inconvenience. Furthermore, any new spectra 
added to the database also necessitate retraining. The models 
of artificial neural networks involved in the intelligent 
identification of minerals are perceptron, Autoencoder, BP 
neural network, Kohonen (also called SOM) network, 
multilayer perceptual neural network (MLP), and 
feedforward network structure. Each of them is described 
below and shown in Table 2. Perceptron: Ref. [7] trained a 
multilayer perceptron based on single polarized and 
orthogonal polarized image texture features to identify 23 test 
minerals in igneous rocks. Compared with other networks, 
artificial neural networks [14] are ideal for applications 
requiring repetitive identification of a limited number of 
minerals because they are less susceptible to changes such as 
lighting. This approach achieves 90% accuracy for 
identifying colored and colorless minerals, with improved 
performance when utilizing larger training datasets. Ramil, A. 
etal [1] implemented a backpropagation algorithm with mean 
square error minimization to optimize a traditional three-layer 
perceptron for identifying minerals within granite images. 
Experimental results demonstrated that a 10-neuron hidden 
layer artificial neural network yielded the best performance 
as a granite mineral recognition model, attaining a 90% 
success rate. In [16], two artificial-intelligence-based 
approaches are compared. One is based on the pattern 
recognition method—more precisely, on the nearest neighbor 
(NN) method; the other is based on the artificial neural 
network (multilayer perceptron—MLP) algorithm. The 
results from the experiments show that both AI methods have 
a high correct classification rate and that the pattern 
recognition method has great potential to be applied to the 
identification of coal micro fraction groups, and the results of 

the study also show that the best results can be obtained with 
the most classical pattern recognition method, i.e., the neural 
network method. López,A.etal. [2] proved the ability of a 
laboratory-scale hyperspectral reflectance imaging system 
combined with an artificial neural network to accurately 
identify the constituent minerals of Hessian granites in Haixi. 
Autoencoders: have been effectively utilized to address the 
common geological occurrence of nonlinear mineral mixing. 
Zhou Qiu et al. [24] developed a self-coding neural network 
incorporating dropout noise reduction and sparse strategies, 
culminating in a sparse fully connected neural network. This 
innovative approach contributes to the range of spectral 
unmixing methods aimed at mineral identification and 
quantitative analysis. BP Neural Network: The method of 
interpretation of stratigraphic elements is based on 
optimization algorithms that use core analysis data to identify 
minerals by determining a mineral model that reflects the 
distribution of mineral content. However, mineral 
identification in coreless wells becomes very difficult, and 
artificial neural networks can solve this problem with their 
unique sample learning capability. Tang, D.G. etal. [13] 
trained and optimized a BP neural network for mineral 
identification, and a BP neural network trained from a known 
well successfully predicted another unknown well; however, 
due to the diversity of elements in the XRF measurements, 
elemental analysis had to be performed before training the BP 
neural network. Qiang, Z.etal [25] used the spectral angle 
mineral mapping method for identification and BP neural 
network technique for different iron ores, both of which have 
their own advantages. Tang, D.G. etal [13] used XRF to 
analyze the elemental content of rock chips and the BP neural 
network (BPNN) model to identify the rocks to construct a 
neural network evaluation system based on accuracy, kappa, 
recall, and training speed, and the improvement made the 
model have significant advantages in recognition 
performance 

and training speed. Hizhen, H. etal [26] designed a multilayer 
perceptron, applied 5-fold cross-validation, and performed 
artificial neural network identification for each image after 
clustering mineral pixels using the properties of RGB and 
HSI color spaces of mineral pixels and the proposed 
clustering algorithm of the new ART algorithm design. This 
intelligent system has high accuracy and precision for mineral 
identification. Table 1. Comparison of different artificial 
neural network models for intelligent identification of 
minerals. 
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4.2. Machine Learning 

Machine learning, a subset of artificial intelligence, focuses 
on recognizing and interpreting data patterns and structures 
for learning, reasoning, and decision-making without human 
intervention. In essence, machine learning enables users to 
input substantial data amounts into computer algorithms, 
allowing data-driven recommendations and decisions based 
solely on the input data. Algorithms integrate corrected 
information for improved future decisions.  

 

Table 2. summarizes intelligent mineral identification 
methods utilizing machine learning techniques. 

Algorithm Pros Cons 

Statistical 
Learning [27] 

Simple and stable The iteration speed is 
slow, the number of 
iterations is high, and it 
is easy to fall into the 
local optimum. 
 
 

Clustering 
[8,28,29] 

 
Simple, direct, and 
efficient. 
Fast convergence. 
Strong interpretability 
of results. Good 
clustering effect 
 

The mean value must be 
defined.  
The number of clusters 
needs to be specified. 
The value of the number 
of clusters affects the 
clustering effect. 
 High impact on outlier 

 
 
 
 

 

Statistical-based machine learning will be introduced first. 
Statistical-based machine learning is machine learning based 
on data rules, which includes statistical learning and 
clustering. (1) Statistical Learning: Statistical learning is 
used to discriminate the class of a mineral by calculating the 
magnitude of the probability of the measured mineral. 
Aligholi et al. [27] selected seven mineral optical properties 
in the CIELab color space, calculated the probability that the 
test sample was a specific class, and used a majority voting 
scheme to determine the class of the mineral. (2) Clustering: 
Clustering is employed for unsupervised mineral detection, 
grouping similar spectral features into one mineral class. 
Unsupervised learning extracts valuable information from 
unlabeled data, with clusters categorized as soft or hard. Hard 
clustering assigns each data point to one cluster, whereas soft 
clustering allows points to belong to multiple clusters with 
varying membership degrees. Prabhavathy, P etal [8] utilized 
principal component analysis (PCA) for dimensionality 
reduction and hard/soft clustering algorithms for 
hyperspectral data classification. Mi, Z. etal [28] applied 
KSOM for training with clustering centers as input, 
facilitating the identification of six mineral classes and their 
occurrence frequencies. Jiang, G. etal [29] implemented the 
K-means clustering algorithm for classification and the FCC-
K-means method for unsupervised mineral identification, 
significantly enhancing performance. Prabhavathy, P etal [8] 

combined unsupervised training with the PCA algorithm for 
dimensionality reduction of HSI dimensions. Hard clustering 
(K-means) and soft clustering (PFCM) algorithms were 
employed for data classification, with PFCM outperforming 
K-means for both original HSI images and reduced bands 
based on DBI values. Rule-based machine learning is 
introduced in the following. Rule-based machine learning is 
a statistical machine learning based on rules, which includes 
principal component analysis (PCA), partial least squares 
regression (PLS), decision tree, random forests (RF), 

 

and distance metric models, as shown in Table 3. Table 3. 
Comparison of different rule-based machine learning 
algorithms for intelligent identification of minerals 

Algorithm Pros Cons 

Algorithm Pros Cons 

Perceptron 
[1,2] 

The model is 
simple and easy 

to implement 
 
 
 

Cannot handle linearly 
indistinguishable training data 
perfectly. The final number of 
iterations is strongly influenced 
by the hyperplane results as well 
as the data in the training set. The 
goal of the loss function is only to 
reduce all misclassified points 
with the hyperplane. Eventually, 
some of the sample points will 
likely be very close to the 
hyperplane; in a way, such a 
classification effect is not 
particularly good, and this 
problem will be well-solved in 
the support vector machine. 
 
 

Auto encoder 
[24] 

Generalization is 
strong and it is 
unsupervised 
learning, so no 
data labeling is 
required 

It is a loss, and the decompressed 
output is degraded compared 
with the original input. It is data-
dependent and can only compress 
those data that are similar to the 
training data 

BP Neural 
Network 
[13,25] 

Strong nonlinear 
mapping 
capability. 
Highly self-
learning and 
self-adaptive 
capabilities. 
With some 
generalization 
ability. Fault-
tolerance 
capability 

With local miniaturization 
problem. Slow convergence rate. 
Structure selection varies. 
Paradoxical problems with 
application examples and 
network size. Paradoxical 
problems with predictive and 
training abilities. 
 

Multilayer 
perceptual 

networks [26] 

High 
parallelism. 
High nonlinear 
generic effect. 
Good fault 
tolerance and 
associative 
memory 
function 

The number of parameters makes 
training difficult. The spatial 
information between pixels is 
lost and only vector input is 
accepted 
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Principal 
component 

analysis 
[29] 

Greater ease of use of 
datasets. Reducing the 
computational overhead 
of the algorithm. 
Removing noise. Making 
the results easier to 
understand. Complete 
absence of parameter 
restrictions. 
 

If the user has some a 
priori knowledge of the 
observed object and has 
mastered some features of 
the data, but is unable to 
intervene in the processing 
process through methods 
such as parameterization, 
the expected results may 
not be obtained and the 
efficiency may not be 
high. The decomposition 
of eigenvalues has certain 
limitations. In the case of 
non-Gaussian distribution, 
the resulting principal 
elements may not be 
optimal. 

Partial 
least 

squares 
regression 

[30–32] 

The regression of 
multiple dependent 
variables on multiple 
independent variables 
can be performed 
simultaneously, which is 
also applicable when the 
sample is small, and the 
exact regression equation 
can be obtained. The 
degree of influence of 
independent variables on 
dependent variables can 
be quantified when the 
number of variables is 
suitable. It is possible to 
control and predict more 
effectively. 

The regression coefficients 
are difficult to interpret. 
Not applicable when the 
number of independent 
variables is small. 

Decision 
Tree [33] 

 
 
 

Easy to understand and 
simple to explain the 
mechanism. Can be used 
for small datasets. Less 
time complexity. Can 
handle numbers and 
classes of data. Can 
handle multiple output 
problems. Insensitive to 
missing values Can 
handle uncorrelated 
feature data. High 
efficiency, requiring only 
one construction and 
repeated use, with the 
maximum number of 
calculations per 
prediction not exceeding 
the depth of the decision 
tree. 

More difficult to predict for 
continuous fields. Prone to 
overfitting. When there are 
too many categories, the 
error may increase faster. 
Does not perform too well 
when dealing with data 
with strong feature 
correlation. For data with 
inconsistent sample sizes 
in each category, the 
information gain results in 
favor of those features with 
more values in the decision 
tree. 
 

Random 
Forest 
[10,34] 

Training can be highly 
parallelized. When the 
sample features are of 
high dimensionality, the 
model can still be trained 
efficiently. After 
training, the importance 
of each feature for the 
output can be given. Due 
to the use of random 
sampling, the variance of 
the trained model is small 
and the generalization 
ability is strong. The 
implementation is 
relatively simple. 
insensitive to partial 
missing features. 
 

On certain sample sets with 
more noise, it is easy to fall 
into overfitting. Features 
that take more divided 
values tend to have a 
greater impact, which 
affects the effectiveness of 
the fitted model 
 
 
 
 

Principal Component Analysis (PCA): PCA is frequently 
employed to reduce dataset dimensionality while preserving 

the features contributing most to variance. Jiang, G. etal [29] 
utilized the K-means clustering method with hue saturation 
value (HSV) PCA to group mineral regions into different 
classes. Partial Least Squares (PLS): PLS addresses the 
challenges of variable multicollinearity in system modeling 
and considers input-output correlations. PLSDA is a widely-
used chemo metric technique for high-dimensional data 
regression. Remus et al. [49] applied PLS to identify obsidian 
provenance with over 90% accuracy in California, USA. El 
Haddad et al.  [32] employed PLS, specifically MCR-ALS, 
on SEM/EDS and LIBS data for mineral analysis, yielding 
less than 10% root mean square error compared to 
quantitative mineral analysis (QMA) results. PCA and PLS 
extract latent variables representing a system's physical 
properties. PLS performs regression on expected system 
response, while PCA solely extracts variables. For classifying 
high-dimensional data, PCA and PLS do not require data 
downscaling before classification [31]. Decision Trees: 
Decision trees are predictive models representing the 
mapping relationship between object attributes and values. 
Data are classified top-down based on attribute 
distinguishability, with leaf nodes signifying specific 
categories and the paths from root to leaf nodes forming 
classification rules. Decision trees are easily interpretable, 
handle numerical and categorical data, and exhibit robustness 
in large or noisy datasets. Yousefi, B. etal. [33] used decision 
trees to extend applications in the optical identification of 
common opaque minerals. Random Forest: A random forest 
(RF) is a classifier comprising multiple decision trees. During 
learning, a random subset of candidate features is selected to 
train the decision trees, and the output class is determined by 
the plurality of output classes from the multiple trees. RFs 
handle numerous input variables, yield accurate classifiers, 
and reduce classification errors in imbalanced datasets. 
Xuefeng Liu et al. [50] applied RF models for SEM grayscale 
anomaly image segmentation classifier training. Chen, Z. etal 
[10] utilized linear discriminant analysis (LDA) to project 
data into a space with fewer dimensions and maximum 
separability between classes. RFs introduce modifications by 
constructing a collection of n trees (without pruning) or using 
only a subset of m descriptors. A comparison of LDA, SVM, 
and RF methods revealed similar performance, with RF 
demonstrating slightly higher accuracy. Khajehzadeh, N. etal 
[34] employed RF-based models to classify various stages of 
kerogen (organic component) and minerals (inorganic 
component). Distance Metric Model: The distance metric 
model assesses the similarity of test data to other minerals 
using a distance function (metric) between elements in a set. 
While simple and scalable, this model requires highly 
distinguishable classification features. Baklanova et al. [51] 
classified datasets based on similarity through K-means 
clustering analysis for mineral identification, utilizing 
distance calculations like Euclidean distance. Yalçın, C. [52] 
examined the use of machine learning theory in mineral 
exploration, emphasizing its capacity for improved and 
influential prediction compared to conventional approaches, 
hence increasing the complexity of the process. 
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4.3. Deep Learning 

Deep neural networks extend traditional neural networks, 
incorporating multiple hidden layers to extract complex 
structured data features. Deep learning encompasses various 
network architectures, including convolutional neural 
networks, residual networks, and Siamese networks. 
Numerous deep learning frameworks exist, each offering 
unique capabilities. Tables 5 and 6 summarize intelligent 
mineral identification methods leveraging deep learning 
techniques. Deep learning's ability to capture intricate 
patterns in data has led to its widespread adoption across 
numerous domains, revolutionizing the field of artificial 
intelligence and enabling more accurate and efficient 
solutions to complex problems. As research in this area 
continues to progress, we can expect further advancements 
and innovative applications in the field of mineral 
identification and beyond. Convolutional Neural Networks 
(CNNs): CNNs comprise one or more convolutional layers 
and a fully connected layer at the top. This architecture 
leverages the two-dimensional structure of input data, 
yielding superior results in image and speech recognition. 
When applied to semantic segmentation of spectral images, 
CNN models encounter resolution reduction in feature maps 
due to repeated convolution and pooling operations, leading 
to loss of detailed structural and edge information. Tian et al. 
[43] addressed this issue by introducing dilated convolution, 
proposing a mineral spectral classification method based on a 
one-dimensional dilated convolutional neural network (1D-
DCNN). This approach extracts spectral features using a null-
dilated convolutional neural network, adjusts model 
parameters with a backpropagation algorithm and stochastic 
gradient descent optimizer, and outputs spectral classification 
results for end-to-end detection of mineral categories. 
Tiwary, A.K etal [38] applied the simple linear iterative 
clustering (SLIC) method to SEM images of mineral particles 
smaller than 50 µm for high-quality segmentation. They 
employed a convolutional neural network-based model, 
ResNet, to overcome gradient disappearance problems in 
deep learning networks with hundreds or thousands of layers, 
improving performance and reducing training errors. Cai Y. 
et al. [42] constructed a multiscale expanded convolution 
attention network for Raman spectroscopy to identify 
unknown minerals. Expanding convolution was used to 
extract multiscale features from mineral spectra, broadening 
the field of perception for feature extraction. A channeled 
attention mechanism was formed by combining a squeeze-
and-excitation block (SE block) and a multiscale expanding 
convolution module, increasing the convolutional network's 
sensitivity to informative features. Zeng, X. et al [44] 
proposed a mineral identification method combining mineral 
photo image features and mineral hardness features, utilizing 
the deep convolutional neural network EfficientNet-b4 for 
image feature extraction. Okada, N. etal [5] introduced an 
automatic mineral identification system combining 
hyperspectral imaging and deep learning to identify mineral 
types before the mineral processing stage. Liu, X. etal [41] 
developed a new automated mineral identification method 

integrating measurements from two complementary 
spectroscopic techniques, employing CNN for  

 

Raman and VNIR and cosine similarity for LIBS. Reference 
[45] applied convolutional neural network techniques for the 
automatic extraction of optical mineral features for mineral 
identification. Loao, A etal [11] explored the use of CNN as 
a tool to accelerate and automate micro phase classification, 
employing migration learning based on a robust and reliable 
CNN model trained on numerous non-geological images. In 
summary, CNNs have shown remarkable potential in 
advancing mineral identification methods by extracting 
complex features from various data sources and overcoming 
challenges encountered in traditional approaches. Inception-
v3: Zhang et al. [46] employed the Inception-v3 architecture 
to extract four mineral image features: potassium feldspar, 
feldspar, plagioclase, and quartz. They utilized machine 
learning methods such as logistic regression (LR), support 
vector machine (SVM), random forest (RF), k-nearest 
neighbor (KNN), multilayer perceptron (MLP), and Gaussian 
Naive Bayes (GNB) to develop identification models. LR, 
SVM, and MLP emerged as prominent single models for 
high-dimensional feature analysis, with LR serving as the 
metaclassifier in the final prediction. Model fusion effectively 
enhanced the overall performance. Peng et al. [47] studied 16 
common mineral crystal images to construct a mineral 
identification Inception-v3 model, achieving an overall 
accuracy of approximately 86% and a top-5 accuracy of 99%, 
demonstrating robust performance. Cochrane, C etal [35] 
selected Inception-v3 as a pre training model for rock mineral 
image identification, capitalizing on its ability to extract and 
classify complex image features. Inception-v3 has shown 
promising results in mineral identification tasks, offering 
efficient feature extraction and strong classification 
capabilities for high-dimensional data analysis in geological 
contexts. ResNet: Guo et al. [18] utilized the ResNet-18 
neural network model as a basis to train a more accurate 
mineral identification model on five mineral images: quartz, 
hornblende, black mica, garnet, and olivine. This approach 
achieved an accuracy of 89%, enabling intelligent mineral 
identification based on deep learning. Ren et al. [48] attained 
the highest accuracy when employing the ResNet-50 model 
as the base model for intelligent identification of rock mineral 
image samples, demonstrating its effectiveness in extracting 
features and classifying mineral images Tiwary, A.K etal [38] 
reported a validation accuracy of 90.5% using a 47-layer 
ResNet-2 architecture, showcasing its robust performance in 
rock mineral image classification tasks ResNet has proven to 
be a valuable tool in deep learning-based mineral 
identification, providing accurate classification results by 
efficiently learning complex mineral image features and 
addressing challenges faced in traditional methods. Transfer 
Learning: Lou, W. etal [53] proposed a multiproduct coal 
image classification method combining convolutional neural 
networks and Transfer Learning. They constructed a deep 
learning model based on the Inception-v3 convolutional 
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neural network within the TensorFlow and Keras 
frameworks. By applying the Transfer Learning method to 
train and test different coal product image datasets, they 
achieved convergence in loss values and accuracy during the 
training process, resulting in a test accuracy and validation 
accuracy 

exceeding 90%. Lou, W. etal [53] employed a combination of 
Transfer Learning and Siamese neural networks to enhance 
the extraction of multielement geochemical anomalies. By 
incorporating multiscale geochemical data, they improved 
model performance, achieving an accuracy of 85%. This 
demonstrated that the enhanced deep learning approach 
significantly bolsters anomaly identification capabilities. El 
Haddad, J. etal [36] leveraged Transfer Learning techniques, 
utilizing pretrained parameters from a larger ImageNet 
dataset to initialize the network. This strategy enabled high 
accuracy and low computational costs, as the network could 
capitalize on knowledge gained from previous training. Loao, 
A etal [11] explored CNNs for accelerating and automating 
microphase classification, employing Transfer Learning 
based on a robust and reliable CNN model trained on 
numerous non-geological images. This allowed the model to 

adapt its existing knowledge to a new domain, improving 
classification performance. Transfer Learning has proven 
effective in various mineral identification and classification 
tasks, as it allows models to harness knowledge from previous 
training, resulting in enhanced performance and reduced 
computational costs Wen, L. et al. [24] introduced a research 
approach combining neural networks with physical models to 
tackle the challenge of learning from limited samples in 
hyperspectral remote sensing geological investigations. They 
employed a domain-knowledge-based data augmentation 
method, integrating the Hapke radiative transfer model with 
a small number of ground truth points for training label data 
augmentation. Subsequently, they utilized a sparse, fully 
connected neural network for mineral content assessment, 
effectively leveraging domain knowledge to improve 

classification performance with limited data. Int. J. Coal Geol 
[39] proposed hierarchical spatial-spectral feature extraction 
with long- and short-term memory (HSS-LSTM) to explore 
the correlation between spatial and spectral features. This 
method obtained hierarchical intrinsic features for mineral 
identification, demonstrating the potential of integrating 
spatial and spectral information for enhanced classification 
results. These innovative approaches highlight the 
importance of leveraging domain knowledge and integrating 
complementary information sources to overcome challenges 
in mineral identification, particularly when dealing with 
limited data or complex, multidimensional datasets. 

Table 4. Intelligent mineral identification methods based on 
Transfer learning and convolutional neural networks 

Algorithm Pros Cons 
Transfer 
learning 
[5,11,35,36] 
 
 

Requires less training 
data and can make 
more efficient use of 
existing data. Better 
generalization of the 
model by migration 
learning. The training 
process is more stable 
and easier to debug, 
increasing the 
robustness of the 
model. Makes deep 
learning easier. 
Enables 
customization. 

Although it can be 
quantified, it has an 
upper limit and is not 
suitable for solving all 
problems 
 

Convolutional 
Neural 
Network 
[5,9,12,37–45] 
 
 
 

Shared convolutional 
kernel, which can 
handle high-
dimensional data. No 
manual feature 
selection and good 
feature classification. 
 

Need to normalize the 
dataset; difficult to train 
with different sizes 
mixed. No memory 
function. Physical 
meaning is not clear 
enough. Need to tune 
the reference; need 
many samples; training 
is best to use GPU. 
Natural language 
processing capability for 
video speech. 
 
 

 

Table 5. Intelligent mineral identification methods based on 
Inception-v3 and ResNet 

 
 

 

5. Conclusion 

Intelligent mineral identification is a critical task in geology, 
mining engineering, and related fields. The integration of 
computer science and earth science has gained significant 
attention, with artificial intelligence applications in deep-time 
digital earth science contexts demonstrating immense 
potential. While there is still a significant gap between 
geology and artificial intelligence domains, the lack of 
interpretability in AI identification processes, criteria, and 

Algorithm Pros Cons 

Inception-
v3 
[35,46,47] 
 
 
 

Fast calculation speed. 
Increased network depth. 
Increased network width. 
Decomposing into small 
convolutions is effective in 
reducing the number of 
parameters, mitigating 
overfitting, and increasing the 
expressiveness of the network 
nonlinearity. Making spatial 
structured, transforming spatial 
information into higher-order 
abstract feature information. 
Having higher expressiveness 
of the rich network. 

The problem of 
information loss due 
to information 
compression cannot 
be solved without an 
increase in 
computational 
volume. It is not 
possible to increase 
the topology of the 
model to improve its 
expressiveness 
without increasing 
the computational 
volume. 
 
 

ResNet 
[18,38,48] 
 
 
 

Enables feedforward/feedback 
propagation algorithms to 
proceed smoothly and with a 
simpler structure. Constant 
mapping increase does not 
degrade the performance of the 
network. 

Long training time. 

16 
 



ISERDAR: International Science and Engineering Reviews: Development, Analysis, and Research 2 (2), (2024) Page 8-20 
 
unified benchmark mineral datasets necessitates progressive 
foundational work. This paper offers a comprehensive and in-
depth summary of intelligent ore recognition, presenting three 
types of taxonomies. We visualize relevant domain literature 
and conduct trend analysis through keyword detection to 
better explore the field's development. Several suggestions 
are provided for potential future research directions. We aim 
to guide researchers in computing and earth sciences studying 
intelligent mineral identification. Although the dataset 
preprocessing methods, various scenarios, scientific 

questions, data, and applications corresponding to different 
objectives are not fully analyzed due to the study's scope 
limitations, these aspects will be addressed in future work. 
Overall, this study highlights the importance of 
interdisciplinary collaboration and the need for further 
research in addressing challenges and advancing intelligent 
mineral identification techniques to meet the needs of both 
scientific research and industrial demands. 
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