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1. Introduction 

Fundamentally, evidences of amphiboles and biotites 

breakdown can be observed in many volcanic rocks of the 

Tertiary and quaternary periods of Iran [1]. In most of these 

cases the primary amphibole crystals are still seen relatively 

intact [2]. In these rocks, amphibole or biotite have lost their 

stability and turned into anhydrous minerals (such as 

pyroxene), feldspar and metallic minerals [3-4]. In Figure 1 

(d,e,f), we see the breakdown of a pargasite crystal. The 

border of this breakdown and transformations is defined by 

a reactive margin, which eventually grew an augite crystal 

on this phenomenon. In this paper, the causes of this special 

phenomenon and its application to temperature and pressure 

changes in the magma cell are discussed and investigated.  

2. Discussion 

The breakdown of amphibole produces different products 

depending on its composition. For example, the breakdown 

of Grunerite with the formula Fe7Si8O22(OH)2   can be shown 

by the following reaction [5].  

 

 

They also show the breakdown of Pargasite with the 

following reaction [6]. 
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ABSTRACT 

 
Evidences of amphibole and biotite breakdown can be seen in some volcanic rocks of the Tertiary and 

quaternary periods of Iran. This paper, investigates the breakdown of amphiboles in disequilibrium 

conditions. By investigation andesites of Quaternary pyroxenes northeast of Warzghan in northwest Iran, 

we obtained the combined temperature-pressure conditions of the amphibole crystals. Geothermometry 

and geobarometry based on amphibole single-phase compositions indicate that most of the amphibole 

crystals are not in equilibrium with hydrous melts containing ~64-69 wt% SiO2. In the pyroxene andesites 
of the region, some amphiboles have been breakdown. Investigations showed that the arrival of new and 

hot magma pulse caused the magma cell to migrate from deep levels (22.5 km depth and 7.5 kbar pressure) 

to shallower depths (21 km depth and 7 kbar pressure). This increase in temperature and decrease in 
pressure destroyed the stability conditions of amphibole and created the conditions for the growth of 

augite. 
Doi: 10.5281/zenodo.14513898 
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Grunerite                               Fayalite + Quartz + H O2

2Fe Si O (OH)                  7Fe SiO  + 9SiO  + 2H O7 8 22 2 2 4 2 2

2NaCa Mg Al Si O           3CaMgSi O +2Mg SiO +2NaAlSiO +CaAl Si O + MgAl O +H O2 4 3 6 22 2 6 2 4 4 2 2 8 2 4 2

Pargasite                    clinopyroxene + olivine + nepheline + anorthite + spinel + H O2

Grunerite                               Fayalite + Quartz + H O2

2Fe Si O (OH)                  7Fe SiO  + 9SiO  + 2H O7 8 22 2 2 4 2 2

2NaCa Mg Al Si O           3CaMgSi O +2Mg SiO +2NaAlSiO +CaAl Si O + MgAl O +H O2 4 3 6 22 2 6 2 4 4 2 2 8 2 4 2

Pargasite                    clinopyroxene + olivine + nepheline + anorthite + spinel + H O2
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Fig 1. Images of clinopyroxenes in intermediate rocks of 

the region. (a) Image of a clinopyroxene crystal (Cpx) with 

sieve texture and embayed margins (b,c) BSE images of 

image a showing sieve texture, embayed margins and 

fluctuating chemical zoning in more detail. In picture c, the 

empty spaces of the sieve tissue are filled by volcanic glass. 

(d,e,f) Break down of pargasite mineral (Prg) into a set of 

minerals (such as pyroxene, feldspar and metal minerals) 

and overgrowth of an augite crystal (Aug) on pargasite 

(Prg) ) (images a, e are in PPL transmitted light, d is in XPL 

transmitted light, and images b, c, f are of Backscatter type) 

 

Basically, amphiboles are very sensitive to changes in 

water vapor pressure [7-8]. In other words, changes in 

water vapor pressure (PH2O) are factors affecting the 

breakdown of amphiboles. In addition to the role of water 

vapor pressure, amphibole breakdown is subject to the two 

factors of heat and lithostatic pressure [9-10]. The results 

of the laboratory work in the temperature and pressure 

coordinate device are shown in Figure 2. The slope of these 

curves is always positive due to the positivity of s 

(entropy) and v (volume). As shown in the diagram of 

Figure 2, decreasing the amount of water vapor pressure 

limits the stability field of pargasite, and on the contrary, 

increasing the amount of water vapor pressure expands the 

range of stability of pargasite. Also, with increasing 

temperature, pargasite loses its stability and transforms 

into other ferromenesine minerals [11-12]. At high water 

vapor pressures (XH2O=1), the curve has an almost vertical 

slope and the role of lithostatic pressure reaches its lowest 

level [13-14]. (Maksimov, 2000, 2009). In other words, in 

the case of PH2O=Ptotal, pargasite breakdown is more 

sensitive to temperature changes than to lithostatic pressure 

changes. Therefore, under constant pressure conditions, 

with increasing temperature, the univariate breakdown 

curve is interrupted and amphibole turns into a set of 

anhydrous minerals (path 1) (Figure 2). The rise in 

temperature at constant pressure can be occurred by the 

entry of hot and fresh magmas into the magma cell. 

In addition, research shows that an amphibole may 

breakdown at constant temperature and variable pressure 

[15-16] (Path 2). For example, if the magma contains 

amphibole or biotite at relatively high depths, with the 

sudden transfer of magma to shallower levels (closer to the 

surface of the earth), the said minerals will breakdown. In 

such conditions, the temperature remains almost constant 

and the pressure suddenly drops significantly (path 2). This 

decrease in pressure causes the mineral to break the single-

variable amphibole breakdown curve and turn into 

anhydrous minerals such as clinopyroxene, olivine, 

feldspar (plagioclase and alkali feldspar) and spinel. This 

change of conditions is usually seen in volcanic 

environments where magma suddenly reaches the earth's 

surface as a result of finding its way through tension zones. 

In this way, it is easy to imagine that the breakdown of 

amphiboles in the earth occurs as a result of the rapid 

passage of magma to higher levels or, in fact, a sudden 

decrease in pressure at a constant temperature (Isothermal 

Decompression) [17].  In the meantime, the phase of the 

released fluids together with the previous fluid phases (in 

equilibrium with the primary magma) accelerated the 

transfer of cations (especially the transfer of alkaline 

cations) and caused the formation of magmatic residues 

very rich in alkali feldspar (series Shoshonite). These fluids 

cause alkaline metasomatism in intervening environments 

[15]. In such conditions, some primary plagioclase is 

surrounded by fluid with alkali feldspars. 

The third state is when the role of temperature and pressure 

is applied simultaneously [18]. In other words, it is possible 

that hot magmas enter the magma cell, causing the 

temperature of the complex to rise and its rise to high 

levels. In such conditions, the temperature increases and 

the pressure decreases, and the univariate curve of 

amphibole breakdown may be interrupted (path 3). 

Now the question arises under what conditions the studied 

pargasites breakdownd. Did temperature changes at 

constant pressure (path 1) cause the breakdown, or pressure 

changes at constant temperature (path 2) or a combination 

of these two (path 3) caused this phenomenon. To 

investigate this issue, we will calculate the temperature and 

pressure of amphibole and pyroxene formation under 

study. Due to the fact that equilibrium investigations show 

the imbalance of crystals and mesostasis of pyroxene 

andesite rocks, we are only allowed to use 

thermobarometric methods based on crystal compositions 

only in this part.  

Table 1 shows the results of calculating the temperature 

and pressure of amphibole and pyroxene formation based 

on different thermobarometric methods. The average 

pressure obtained for the studied amphibole according to 

the methods of Hammarstrom and Zen (1986), Hollister at 

al. (1987), Johnson and Rutherford (1989) and Schmidt 

(1992) is equal to 7.5 kbar [19-22]. Also, according to the 
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method of [23,18], the formation temperature of this 

amphibole (including the pressure of 7.5 kbar) is about 

1043 and 1020 C, respectively (Table 1 and Figure 3). 

Also, according to the method of [24] (temperature and 

pressure measurement only based on the composition of 

clinopyroxene), the formation pressure of this 

clinopyroxene is about 7 kbar and its temperature is 1071 

C (Table 1). The plot of these values in the pargasite 

stability chart shows that the breakdown path of this 

mineral follows path 3. Allen and Broettcher [18] believe 

that water-saturated magmas will cut the stability curve of 

amphibole by ascending to shallow levels and this mineral 

will become unstable [25]. 

 

Fig 2- (a) Breakdown of a pargasite into an anhydrous 

minerals and the overgrowth of an augite on it (b) P-T 

diagram of the stability range of pargasite (Prg) based on 

experimental work [14]. By reducing the amount of XH2O 

from 1 to 0.3, the range of pargasite stability becomes more 

limited. Path 1 shows an increase in temperature at a 

constant pressure, path 2 shows a decrease in pressure at a 

constant temperature, and path 3 shows a decrease in 

pressure with an increase in temperature. Pargasites (Prg) 

present in the pyroxene andesites of the region have 

breakdownd as a result of pressure reduction along with 

temperature increase and have turned into augite (Aug) 

type clinopyroxene. The boundary of this change and 

transformations is determined by the reactive margin 

between these two minerals, including an amalgam of 

different minerals (clinopyroxene, olivine, spinel, feldspar 

and opaque minerals). 

 

Figure 3- Thermometric diagram of pargasite based on 

changes of sodium cation in pargasite against pressure 

changes (after [15]). Based on the calculations, in the Ah-

355 sample, the amount of Na available was 0.63 and the 

prevailing pressure was between 6.3 and 8.2 kbar (on 

average 7.5 kbar). Therefore, the temperature determined 

for the formation of pargasite is around 1020 C. 

3. Conclusion: 

With the things stated above, we can conclude that at the 

time of amphibole (pargasite) formation, magma had a 

lower temperature and higher pressure, and then as a result 

of an accident, its temperature increased and pressure 

decreased. 

According to the texture of other minerals in the sample 

and region, it is believed that when the hot magma entered 

the magma cell, its temperature increased and as a result of 

the pressures on the magma cell, the roof cover of the 

magma cell was broken and the gases in the magma cell 

were released. Degassing) and the pressure has dropped 

rapidly. It is also possible that the arrival of new and hot 

magma pulses caused the magma cell to migrate from deep 

levels (depth of 22.5 km and pressure of 7.5 kbar) to 

shallower depths (depth of 21 km and pressure of 7 kbar). 

This increase in temperature and decrease in pressure 

destroyed the stability conditions of amphibole and created 

the conditions for the growth of augite (Figures 1 and 2). 

As far as this mineral can grow euhedrally on pargasite. 

The border of this change and transformations in the 

presented diagram can be defined by the reaction margin 

between these two minerals (Figure 2). In other words, the 

mixture of different minerals (including plagioclase, 

clinopyroxene and opaque minerals) between these two 

minerals (amphibole and clinopyroxene) can be considered 

as an indicator of the time of magma migration and 

disequilibrium conditions (pressure 7.2 kbar and 

temperature 1050 C). The confirmation of this is also 

evidenced by the growth of alkali feldspars on certain 

plagioclase samples. 
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Table 1- Electron microprobe analysis results for Figure 1 

(Sample Ah-355) (Explanation that for pyroxene and 

amphibole thermobarometry, methods based on the 

composition of the mineral were used. For amphibole 

thermometry, two methods were used (one based on only 

the mineral composition and the other based on amphibole-

plagioclase) and the amphibole formation pressure is 

considered as an average (around 7.5Kbar). Sources used 

for thermobarometry are specified for each case. For the 

formulas used, you can refer to the mentioned references) 
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