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1. Introduction 

Construction is a comprehensive process that transforms 

architectural design into physical structure through 

systematic planning, engineering, and building activities. 

The process encompasses critical stages, such as site 

preparation, foundation work, structural assembly, and 

finishing touches, each requiring specialized expertise and 

precise execution. Construction management orchestrates 

these operations by coordinating all aspects from initial 

planning to final completion, while ensuring adherence to 

budgets, timelines, and quality standards. This management 

discipline integrates various functions, including resource 

allocation, risk mitigation, safety oversight, and stakeholder 

coordination, to deliver successful projects. Through 

effective construction management, projects are completed 

efficiently while meeting regulatory requirements and 

stakeholder expectations, ultimately creating structures that 

serve their intended purposes safely and effectively. 

Time management is essential for maintaining project 

schedules, cost management safeguards against financial 

overruns, and risk management minimizes potential 

disruptions caused by safety hazards, environmental issues, 

and other uncertainties. However, optimizing these factors 

simultaneously presents a challenge due to their 

interdependent nature; reducing project time, for instance, 

may lead to increased costs or heightened risks. This 

dynamic interplay highlights the need for a structured 

approach to assess and balance these competing objectives, 

making time-cost-risk (TCR) trade-off analysis a crucial 

aspect of modern construction project management. 

Trade-offs have become so popular today because they 

allow managers to evaluate and prioritize competing 

objectives, making it easier to optimize outcomes based on 

the specific goals and constraints of each project. The topic 

of time-cost trade-offs in construction management has 

received significant attention in literature over the past few 

decades. Beyond the time-cost trade-off, other important 

trade-offs have been explored in the literature. The time-

cost-quality trade-off introduces the complexity of 

maintaining high-quality standards while balancing time 

and cost. The time-cost-environmental trade-off is gaining 

increasing attention as sustainability becomes a critical 

aspect of modern construction practices. Through the 
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application of diverse mathematical programming 

methodologies, researchers have proposed numerous 

models addressing trade-offs among time-cost, time-cost-

quality, time-cost-quality-safety, and time-cost-quality-

environment impact factors. Although risk plays a 

significant role in construction management, only a few 

studies have examined time-cost-risk trade-offs. 

Optimization involves the minimization or maximization of 

a function with multiple variables, typically under equality 

or inequality constraints. Numerous engineering design 

challenges are highly complex and difficult to resolve with 

traditional optimization methods. (Sivanandam & Deepa, 

2008). Since traditional approaches often lead to poor 

outcomes and increased vulnerability to unexpected events, 

multi-objective optimization algorithms offer a promising 

solution to trade-offs models. Multi-objective optimization 

algorithms have emerged as powerful techniques to address 

in construction management. These algorithms provide a 

systematic approach to simultaneously optimize multiple, 

often conflicting objectives, offering a range of Pareto-

optimal solutions. By employing advanced technology and 

mathematical models, these algorithms can analyze 

extensive project information, evaluate various scenarios, 

and provide multiple best-fit solutions that align with 

conflicting objectives. This approach not only improves 

decision-making capabilities but also offers valuable 

insights into the trade-offs inherent in construction project 

management. 

This review article aims to investigate the application of 

multi-objective optimization algorithms in managing the 

Time-Cost-Risk (TCR) trade-off in construction projects. 

By synthesizing recent advancements in research and 

industry practices, it provides construction professionals, 

researchers, and decision-makers with a comprehensive 

understanding of how these algorithms can optimize TCR 

analysis. It not only provides a roadmap for selecting 

appropriate optimization techniques but also emphasizes 

the need for future research on algorithmic integration and 

hybrid approaches.  It presents a thorough study of 

extensively applied algorithms such Genetic Algorithms 

(GA), Non-Dominated Sorting Genetic Algorithm (NSGA 

II and NSGA III) and along with newly developed methods 

such as Adaptive Multi-Objective Differential Evolution 

(AMODE) and hybrid models. By examining the strengths, 

limitations, and applicability of these methods, this review 

highlights opportunities for improving construction project 

outcomes. As construction projects grow in complexity, 

adopting these advanced optimization techniques is 

essential for enhancing decision-making, mitigating risks, 

optimizing time and cost efficiency, and achieving 

competitive, high-performing project outcomes. 

2. Optimization of Time-Cost-Risk 

2.1 Time Management 

In construction, time management involves planning, 

scheduling, and monitoring project timelines to ensure tasks 

are completed on time. It includes defining project phases, 

estimating activity durations, and managing resources to 

minimize delays. Effective time management reduces 

delays, enhances efficiency, ensures project goals stay on 

track and drives successful project completion. Critical Path 

Method (CPM), Gantt charts, and the Program Evaluation 

and Review Technique (PERT) are widely used for 

managing time in    construction projects. CPM helps 

identify the most important tasks that affect the project’s 

timeline and optimizes the schedule. Gantt charts create a 

clear visual timeline, showing task progress and how 

different activities are connected, making it easier to spot 

and fix delays. PERT provides a flexible way to estimate 

task durations by accounting for uncertainties, helping 

managers plan for potential risks. 

2.1.1 Minimizing Project Time PT  

The PT is the total time required to complete all activities 

carried out along the project's longest path, called 

the critical path (CP). 

PT = ∑  

𝐴∈𝐶𝑃

𝐴𝑇𝐴 
(1) 

In Eq. (1), 𝐴𝑇𝐴 denotes completion time of activity 𝐴 

lying on the critical path. 

2.2 Cost Management 

Cost management entails estimating, budgeting, and 

controlling project expenses to prevent cost overruns and 

ensure financial efficiency. It involves tracking costs 

throughout the project lifecycle, comparing actual costs to 

the budget, and adjusting as needed. Successful cost 

management supports profitability and ensures projects 

stay within financial constraints. 

2.2.1 Minimizing Project Cost PC 

PC factors are taken into consideration as project direct 

costs along with the indirect costs of activities. 

Consequently, Eq. (2) can be used to evaluate the PCC. 

𝑃𝐶 = ∑ 𝐷. 𝐶

𝐴

+  𝐼. 𝐶 per day × 𝑃𝑇 in days 

 + 𝑉𝑑1 × 𝐶𝑝 × (𝑃𝑇 − 𝑃𝑇contract ) −  

𝑉𝑑2 × 𝐶𝑟 × (𝑃𝑇contract − 𝑃𝑇) 

(2) 

(∑𝐴  𝐷. 𝐶) indicates the total direct cost of all project 

activities, including labor, raw materials, and equipment 

costs. On the other hand, the total indirect cost of the 

project is shown by (I.C per day × 𝑃𝑇 in days). If the PT is 

longer than 𝑃𝑇contract , the contractor will be penalized 

(𝑉𝑑1 × 𝐶𝑝 × (𝑃𝑇 − 𝑃𝑇contract )) where 𝑃𝑇contract  is the 

project deadline specified in the contract document and 𝐶𝑝 

is the penalty for each day of delay. Moreover, 𝑉𝑑1 is a 

decision variable that is binary decision variable. If the 
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PCT is less than 𝑃𝑇contract , (𝑉𝑑2 × 𝐶𝑟 × (𝑃𝑇contract − 𝑃𝑇)) 

serves as a reward for the contractor.  𝑉𝑑2 is an additional 

binary decision variable, and 𝐶𝑟 is the daily reward. 

2.3 Risk Management 

Risk management is the process of identifying, assessing, 

and mitigating potential risks that could impact the 

project’s success. This includes analyzing factors like 

safety hazards, environmental issues, and financial 

uncertainties that might delay timelines or increase costs. 

Through proactive planning and monitoring, risk 

management aims to minimize negative impacts, ensuring 

the project progresses smoothly and safely. 

2.3.1 Minimizing Project Safety Risk PSR  

This method includes three phases: identifying significant 

safety concerns, assessing their likelihood and severity, 

and calculating a total risk score. The process begins by 

identifying significant safety risks for each activity.  Based 

on data gathered from various government reports and 

publications, major risks for each activity were compiled 

in the first stage (Afshar & Zolfaghar Dolabi, 2014) 

.Following risk identification, the likelihood and severity 

of each risk are evaluated based on expert judgmental or 

historical data. (Cooke & Williams, 2024) provided a 6×6 

matrix for scoring these risks. The matrix assesses 

likelihood on a scale from 1 (low probability) to 6 (high 

probability) and severity from 1 (minor injury) to 6 

(fatality). After all the evaluations from experts were 

collected, Eq. (3) was used to determine the total safety risk 

score. 

𝑆𝑅𝑘𝑗 = ∑  

𝑛

𝑖=1

 𝑅𝑘𝑗𝑖 
(3) 

 

𝑅𝑘𝑗𝑖 = 𝑙𝑘𝑗𝑖 × 𝑠𝑘𝑗𝑖 (4) 

Where 𝑆𝑅𝑘𝑗 is total safety risk score of the project of 𝑗th 

alternative of activity k. 𝑙𝑘𝑖 , is likelihood of safety risk, 𝑠𝑘𝑗𝑖 , 

is severity of safety risk and 𝑅𝑘𝑗𝑖 is safety risk score of 

safety risk item 𝑖. 

3. Introduction to Multi-Objective Optimization 

Multi-objective optimization (MOO) is a method for 

optimizing two or more conflicting objectives 

simultaneously, commonly used in fields like engineering, 

economics, and logistics, where trade-offs among different 

objectives must be carefully balanced. For instance, in 

construction, time, cost, and quality may all need to be 

optimized, but improving one can negatively impact the 

others. MOO has been defined as the simultaneous 

optimization of multiple objective functions. (Deb, 2002). 

Central to this methodology is the concept of Pareto 

optimality, which describes solutions where no single 

objective can be improved without threatening others. The 

set of all Pareto optimal solutions is known as the Pareto 

front.  

3.1 Review of Multi-Objective Optimization 

3.1.1 Genetic Algorithms 

A Genetic Algorithm (GA) introduced by (Holland,1975) 

is a specific type of evolutionary algorithm inspired by the 

process of natural selection. GAs evolves a population of 

candidate solutions over multiple generations, using 

operators such as selection, crossover, and mutation to 

search for optimal solutions. GAs is highly adaptable and 

can be applied to a wide range of optimization problems, 

including multi-objective optimization where GA excel at 

finding diverse solutions along a Pareto front. Their 

stochastic nature makes them less prone to getting stuck in 

local optima. GAs can be computationally expensive, 

particularly for complex problems with large search 

spaces. Parameter tuning is often necessary to achieve 

optimal performance. Convergence can be slow compared 

to derivative-based optimization methods in cases where 

the objective function is smooth.  To overcome 

shortcomings of mathematical and heuristic approaches, 

metaheuristic algorithms genetic algorithm, is widely used 

to solve both single and multi-objective TCO problems 

(Feng, Liu, & Burns, 1997).  

3.1.2 Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II) 

NSGA-II (Nondominated Sorting Genetic Algorithm II), 

introduced by (Deb et al., 2002) is a widely used multi-

objective evolutionary algorithm (MOEA). Its main 

purpose is to find a diverse set of optimal solutions for 

problems with multiple objectives, which are often in 

conflict with each other. NSGA-II is designed to address 

the limitations of its predecessor, NSGA, resulting in 

enhanced performance and efficiency. NSGA-II is a 

popular multi-objective evolutionary algorithm (MOEA) 

that improves upon the original NSGA by addressing 

computational complexity and enhancing performance for 

solving problems with multiple objectives. It efficiently 

groups solutions into non-dominated fronts through fast 

sorting, where the first front includes the best, non-

dominated solutions. NSGA-II incorporates elitism by 

merging parent and offspring populations to retain the top 

solutions, accelerating convergence. Using crowding 

distance, it promotes a well-spread Pareto front by favoring 

solutions in less dense areas, while the crowded 
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comparison operator combines non-domination rank with 

crowding distance to guide selection, balancing both 

solution quality and diversity. NSGA-II enhances multi-

objective optimization with faster convergence and 

effective diversity maintenance, thanks to its elitist 

strategy, non-dominated sorting, and crowding distance. 

By eliminating the need for a sharing parameter, it 

simplifies usage and is adaptable for handling constraints 

in the search space. However, it faces challenges with 

computational demands in many-objective problems, and 

parameter interactions can slow convergence in 

interdependent decision-variable scenarios. As a stochastic 

method, NSGA-II may fall into local optima without 

guaranteed global Pareto solutions, and its performance is 

still influenced by crossover and mutation settings. 

3.1.3 Ant Colony Optimization (ACO) 

Ant colony optimization (ACO) (Dorigo, Birattari, & 

Stutzle, 2006) is a metaheuristic algorithm that takes 

inspiration from the foraging behavior of ants to solve 

optimization problems. The foundation of ACO lies in the 

concept of stigmergy, an indirect form of communication 

between ants using pheromone trails. When ants forage for 

food, they leave pheromones on the paths they traverse. 

Paths with higher pheromone concentrations attract more 

ants, creating a positive feedback loop that enables the 

colony to discover and converge on efficient paths to food 

sources. ACO algorithms simulate this behavior to find 

optimal or near-optimal solutions to various optimization 

problems. ACO’s robustness against local optima arises 

from its inherent randomness and the gradual decay of 

pheromone trails, which together maintain search 

diversity. Another strength is its flexibility, as ACO can be 

applied to diverse optimization problems, particularly 

those involving combinatorial optimization, such as 

scheduling. However, ACO algorithms require careful 

parameter tuning, as their performance depends on factors 

like the number of ants, pheromone evaporation rate, and 

the balance between pheromone and heuristic information. 

Slow convergence is another potential drawback, 

especially for problems with large search spaces. The 

sources offer specific examples of ACO applications. One 

source discusses multi-objective ACO (MOACO) 

algorithms designed for multi-objective combinatorial 

optimization problems. It proposes a taxonomy for 

categorizing MOACO algorithms based on characteristics 

like pheromone model, solution construction, evaluation 

method, and handling of Pareto optimal solutions. The 

source also examines various existing MOACO algorithms 

and offers design guidelines.  

 

3.1.4 The Artificial Bee Colony (ABC) algorithm  

(Karaboga & Basturk, 2008) developed Artificial Bee 

Colony (ABC) Algorithm. ABC is an optimization 

algorithm based on the intelligent behavior of honeybee 

swarms. The Artificial Bee Colony (ABC) algorithm is 

valued for its simplicity and ease of implementation, as its 

structure is straightforward with minimal parameter tuning 

requirements, making it accessible to non-experts and 

adaptable across various programming environments. Its 

robustness and adaptability to complex problems are 

notable due to its unique bee roles, allowing it to avoid 

local optima and handle challenging search spaces. 

Additionally, the ABC algorithm effectively manages 

multimodal and multivariable optimization, often 

outperforming algorithms like Genetic Algorithms (GA) 

and Particle Swarm Optimization (PSO) on benchmark 

functions. However, its parameter sensitivity can affect 

performance, and its convergence speed may be slower for 

high-dimensional problems, making it less suitable for 

time-sensitive applications. Furthermore, the ABC 

algorithm lacks a strong theoretical foundation, which 

limits rigorous analysis of its behavior and performance 

across diverse optimization problems. 

3.1.5 Adaptive Multiple Objective Differential 

Evolution (AMODE) 

The capacity of DE to provide effective solutions for 

complex problems through relatively simple operations has 

motivated numerous researchers to establish MODE-based 

methodologies (Das & Suganthan, 2011). Building on the 

foundations of Differential Evolution (DE), which is 

known for its simplicity and effectiveness in single-

objective optimization, Adaptive Multi-Objective 

Differential Evolution (AMODE) extends DE’s 

capabilities to multi-objective optimization by 

incorporating adaptive mechanisms. While DE operates 

with fixed parameters, AMODE dynamically adjusts 

parameters such as mutation and crossover rates based on 

the progress of the optimization. This adaptability allows 

AMODE to balance exploration and exploitation more 

effectively, making it ideal for complex scenarios with 

multiple conflicting objectives (Cheng et al., 2016). 

AMODE also enhances DE’s performance in high-

dimensional spaces by improving solution diversity across 

the Pareto front, maintaining a well-distributed set of 

optimal solutions for multi-objective challenges. 

3.1.6 Non-Dominated Sorting Genetic Algorithm III 

(NSGA-III) 

Traditional approaches, such as the Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II), have been 



ISERDAR: International Science and Engineering Reviews: Development, Analysis, and Research, 2 (3), (2024), Page 54-63 

 

58 
 

effective for two or three objectives. They often struggle 

with high-dimensional problems where maintaining 

diversity and efficiency becomes challenging. To address 

this, the new algorithm NSGA-III was developed by (Deb 

& Jain, 2014). NSGA-III uses a reference point-based 

approach, guiding solutions toward a diverse Pareto front 

and enhancing its capability to handle many-objective 

optimization problems. Among its advantages, NSGA-III 

is known for maintaining a well-distributed set of 

solutions, improved scalability, and faster convergence 

toward optimal solutions in complex objective spaces.  

However, it also has challenges such as selecting an 

appropriate set of reference points that can be difficult, as 

this step often requires either prior knowledge or 

experimentation. Additionally, NSGA-III can be 

computationally intensive and may not offer significant 

performance gains for certain objective structures. Despite 

these limitations, NSGA-III is widely used in fields like 

engineering, logistics, and finance, where balancing 

numerous objectives is critical for effective decision-

making. 

Table 1. Algorithms Comparison Table 

Algorithm Key Characteristics Pros  Cons  

Genetic Algorithms (GA) 

Evolutionary algorithm 

using selection, crossover, 

and mutation operations 

Finds diverse solutions, 

effectively avoids local 

optima, highly adaptable, 

handles discrete and 

continuous variables 

Computationally expensive, 

sensitive to parameter settings, 

slow convergence, 

performance depends on 

population diversity 

Ant Colony Optimization 

(ACO) 

Inspired by ant colony 

behavior and pheromone 

trail following 

Strong capability in avoiding 

local optima, excellent for 

combinatorial problems, 

inherently parallel, adapts to 

changes 

Generally slow convergence 

requires careful parameter 

tuning, critical pheromone 

update rules, difficult 

theoretical analysis 

Non-Dominated Sorting 

Genetic Algorithm II 

(NSGA-II) 

Multi-objective genetic 

algorithm with fast non-

dominated sorting and 

crowding distance 

Efficient sorting mechanism, 

excellent diversity 

maintenance, widely used for 

2-3 objective problems, 

effective constraint handling 

Performance decreases with 

many objectives, 

computationally intensive for 

large populations, crowding 

distance less effective in high 

dimensions, parameter tuning 

can be challenging 

Artificial Bee Colony (ABC) 
Inspired by foraging 

behavior of honeybees 

Simple to implement, good at 

handling multimodal 

problems, minimal parameter 

tuning, balances exploration 

and exploitation 

May converge slowly in high-

dimensional spaces, 

performance depends on bee 

role balance, can struggle with 

constrained optimization, 

limited theoretical foundation 

Non-Dominated Sorting 

Genetic Algorithm III 

(NSGA-III) 

Enhanced version of NSGA-

II for many-objective 

optimization 

Excellent for problems with 

more than 4 objectives, 

maintains good solution 

diversity, robust in high-

dimensional objective spaces, 

effective reference point 

adaptation 

Computationally demanding, 

complex implementation 

requires careful reference point 

selection, may struggle with 

irregular Pareto fronts 

Adaptive Multi-Objective 

Differential Evolution 

(AMODE) 

Enhanced DE algorithm with 

adaptive parameter control 

Better exploration-

exploitation balance, self-

adaptive parameter tuning, 

good for complex multi-

objective problems, robust 

performance across different 

problems 

Higher computational 

overhead, complex adaptive 

mechanisms, may require 

initial parameter calibration 
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4. Review of Previous Case Studies on Time-Cost-Resources Trade-off (TCRT) 

Table 2. Previous Case Studies 

References  Year 

 Trade-off Model 
Approach 

Time Cost Risk Quality Environment Resource CO2 

Lakshminara

yanan et al. 
2010 ✓ ✓ ✓     Ant Colony Optimization 

Afshar & 
Zolfaghar 

Dolabi 

2014 ✓ ✓ ✓   
 

 Genetic Algorithm 

Amoozad 
Mahdiraji et 

al. 

2016 ✓ ✓ ✓ ✓  
 

 Grey Multi-Objective Linear 

Programming 

Mohammadi
pour & 

Sadjadi 

2016 ✓ ✓ ✓ ✓  
 

 Goal attainment 

Mahmoudi 
& 

Feylizadeh 

2018 ✓ ✓ ✓ ✓  
 

 Grey Linear Model 

Tran & Long 2018 ✓ ✓ ✓     Adaptive Multiple Objective 
Differential Evolution 

Duc Long et 

al. 
2019 ✓ ✓ ✓     MOABCDE 

Hosseinzade

h et al. 
2020 ✓ ✓ ✓ ✓    Dolphin Hunting Algorithm 

Askarifard et 
al. 

2021 ✓ ✓ ✓ ✓ ✓ 
  Robust Programming 

Panwar & 

Jha 
2021 ✓ ✓ ✓ ✓    Nondominated Sorting Genetic 

Algorithm III) 

Kaveh et al. 2021 ✓ ✓ ✓ ✓ ✓ ✓  Differential Evolution (DE) 

Sharma & 

Trivedi 
2022 ✓ ✓ ✓ ✓  

 
 LHS-based NSGA III 

Avsar & 
Onut 

2022 ✓ ✓ ✓ ✓    Goal Programming, AHP 

Shishehgark

haneh et al. 
2022 ✓ ✓ ✓ ✓   

✓ 
Fire Hawk Optimizer (FHO), 

BIM 
Banihashemi 

& 

Khalilzadeh 

2022 ✓ ✓ ✓ ✓  
 

 Fuzzy Logic and Genetic 

Algorithm 

Sharma et 

al.,  
2023 ✓ ✓ ✓ ✓  

 
 

Particle Swarm Optimization 

(PSO) 

Anh Nguyen 

et al 
2023 ✓ ✓ ✓   

 

✓ 

Chaotic Adaptive Multi-
Objective Sea Horse 

(CAMOSH) 

Sharma & 
Trivedi 

2023 ✓ ✓ ✓ ✓ ✓ 
 

 Opposition-based NSGA III 

Yılmaz & 
Dede 

2024 ✓ ✓ ✓     
 

  
NDSII-Rao-2, NDSII-GWO, 
NDSII-WOA 

 

The paper by (Afshar & Zolfaghar Dolabi, 2014) presents 

a multi-objective optimization model that integrates time, 

cost, and overall safety risk (OSR) using a Genetic 

Algorithm (GA). Thus, this paper aims to propose a multi-

objective GA-based model to incorporate safety analysis in 

discrete TCO problem and present pareto-optimal front 

that consists of nondominated solutions. An Excel VBA 

macro is also developed to facilitate the use of the model 

and make it more practical. A case study involving 18 

activities was analyzed under two distinct scenarios. The 

first scenario focused on minimizing both time and cost, 

while the second scenario aimed to optimize time, cost, and 

safety risk. To achieve optimal performance in both 

scenarios, the genetic algorithm (GA) parameters were 

carefully tuned. The results indicated that the Time-Cost-

Safety Risk Optimization model provided a broader range 

of nondominated solutions compared to traditional 

approaches. Furthermore, the integration of safety risk 

assessments significantly enhanced the overall safety risk 

management within the model, demonstrating its 

effectiveness in addressing safety concerns alongside time 

and cost optimization.Using the ant colony optimization 

approach, (Vijayan et al., 2018) presented a multi-objective 

optimization model for time-cost risk management. Ant 

colony optimization algorithm (ACO) is a probabilistic 

technique for dealing with computational problems that 

can be simplified by identifying effective pathways 

through   graphs. The optimal solution for time and cost 
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obtained from the algorithm proposed are compared to 

problem solutions obtained from the MAWA (modified 

adaptive weight approach) and MOACO (multi objective 

ant colony optimization) approach. It was discovered that 

the model developed provides efficient results when 

compared to MAWA and comparable results when 

compared to MOACO. By analyzing the results of the 

sample project, the authors observed the inverse 

relationships between time and cost and between time and 

risk. However, the variation in risk values across different 

solutions was less pronounced compared to the changes in 

time and cost, this led the authors to conclude that although 

time and cost are the primary drivers in decision-making, 

the risk factor is also relevant, particularly when comparing 

solutions with similar time and cost values. 

To tackle the Time-Cost-Risk Trade-off (TCRT) challenges 

in construction projects, (Tran & Long, 2018) introduced a 

novel algorithm known as adaptive multiple objective 

differential evolution (AMODE). The authors developed 

the AMODE-TCR algorithm, which integrates the 

strengths of differential evolution (DE) with an adaptive 

mutation strategy. This approach enhances the algorithm's 

ability to explore diverse solution spaces while maintaining 

effective exploitation of promising solutions. The adaptive 

mechanism prevents the optimization process from 

becoming overly random or greedy, ensuring a balanced 

search for optimal solutions. The performance of the 

AMODE algorithm is evaluated through a numerical case 

study involving a construction project with 10 activities. 

The results are compared against established algorithms, 

including NSGA-II (Non-dominated Sorting Genetic 

Algorithm II), MOPSO (Multi-Objective Particle Swarm 

Optimization), and MODE (Multi-Objective Differential 

Evolution), using various performance metrics.  The 

results indicate that AMODE generates a better Pareto 

front compared to other widely used algorithms, 

showcasing improved greater diversity, balanced 

compromises, and higher degrees of satisfaction. The study 

also demonstrates that the proposed model significantly 

enhances the efficiency and effectiveness of project 

scheduling, making it a valuable contribution to the field of 

construction management. 

Hybrid multi-objective optimization algorithm called 

MOABCDE, which combines the strengths of the Artificial 

Bee Colony (ABC) algorithm and Differential Evolution 

(DE) was used by (Duc Long et al., 2019) to solve Time-

Cost-Risk Trade-off (TCRT) problems in construction 

projects. ABC and DE were chosen by authors for their 

complementary strengths. ABC is proficient at exploring 

different solution spaces but has limitations in efficiently 

exploiting solutions, frequently converging slowly on 

complex issues. DE, which is noted for its resilience and 

fast convergence optimization, balances ABC's limitations 

by effectively refining solutions. Together, these 

algorithms create a balanced hybrid (MOABCDE), which 

improves both exploration and utilization in challenging 

optimization problems. The performance of MOABCDE is 

evaluated through a case study of an eight-activity 

construction project and compared against NSGA-II (Non-

dominated Sorting Genetic Algorithm II), MOPSO (Multi-

Objective Particle Swarm Optimization), MODE (Multi-

Objective Differential Evolution) and MOABC (Multi-

Objective Artificial Bee Colony) using C-metric, Spread, 

and Hyper-Volume metrics. The results showed that 

MOABCDE stands out among other algorithms, showing 

a stronger ability to converge smoothly, maintain diverse 

options, and provide well-balanced solutions for the TCRT 

problem. 

In the context of optimizing time, cost, and risk in 

construction projects, the study by (Panwar & Jha, 2021) 

provided a significant example of how quality and safety 

can be integrated into scheduling optimization. Utilizing 

the Non-Dominated Sorting Genetic Algorithm III 

(NSGA-III), the authors addressed the complexities 

involved in achieving optimal trade-offs among multiple 

objectives, including time, cost, quality, and safety. The 

researchers compared the model's performance against 

existing model examples from past case studies. The 

model's performance was assessed using standard metrics 

such as degree of convergence, diversity, and speed of 

convergence. Compared to existing models, the developed 

model consistently showed better average values across all 

three metrics, signifying superior convergence, solution 

diversity, and computational efficiency. 

(Sharma et al., 2023) demonstrated a Particle Swarm 

Optimization (PSO)-based model to address the multi-

objective optimization problem of balancing quality and 

safety in construction project management, while also 

considering constraints of duration and cost. The authors 

adopted the standard PSO algorithm to handle the 

complexities of the construction domain, including the use 

of non-dominated sorting to identify the Pareto-optimal 

solutions that represent the trade-offs between the 

competing objectives. Through comprehensive 

experiments using real-world construction project data, the 

authors demonstrate that their PSO-based approach is 

effective in identifying optimized project plans that 

achieve desirable outcomes across the key performance 

metrics of quality, safety, time, and cost. The results 

highlight the potential of PSO as a valuable decision-

support tool to aid construction stakeholders in making 
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informed decisions that align with their specific project 

requirements and priorities. 

Table 2 provided valuable insights into the various multi-

objective optimization algorithms in managing the Time-

Cost-Risk Trade-off (TCRT) in construction projects. Most 

of the studies focus on optimizing time, cost, and risk, with 

some extending to other objectives such as quality, 

environment, and CO2 emissions. Algorithms such as 

Genetic Algorithms (GA), Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II), and Non-Dominated 

Sorting Genetic Algorithm III (NSGA-III) are commonly 

applied due to their efficiency in maintaining diverse 

Pareto fronts. Adaptive Multi-Objective Differential 

Evolution (AMODE) and Multi-Objective Artificial Bee 

Colony (MOABCDE) had been used for their adaptability 

and ability to optimize complex multi-objective problems 

in TCRT scenarios. 

In addition to these demonstrated methodologies, novel 

algorithms such as Robust Programming used by 

(Askarifard et al., 2021) and Chaotic Adaptive Multi-

Objective Sea Horse (CAMOSH) (Anh Nguyen et al., 

2023) demonstrate potential in enhancing robustness and 

dynamic adaptation in TCRT problems. Moreover, Fire 

Hawk Optimizer (FHO) combined with Building 

Information Modeling (BIM), as demonstrated by 

Shishehgarkhaneh et al. (2022), introduces an innovative 

approach by integrating optimization with real-time 

construction data, improving decision-making and 

efficiency. Hybrid approaches, such as Fuzzy Logic 

combined with Genetic Algorithms (Banihashemi & 

Khalilzadeh, 2022) and LHS-based NSGA III (Sharma & 

Trivedi, 2022), further enhance the performance of TCRT 

optimization by addressing uncertainty and improving the 

exploration of the solution space. 

Overall, these case studies illustrate the progression of 

multi-objective optimization in construction project 

management, showcasing how both traditional and 

emerging algorithms contribute to more effective TCRT 

solutions.  

5. Conclusion  

Effectively managing time, this review shows that although 

current project management methods have improved 

individual aspects, the construction industry would benefit 

from a more integrated approach that considers time, cost, 

and risk together.  Time and cost overruns continue to 

plague construction projects worldwide, emphasizing the 

critical need for more effective management strategies. 

Risk in construction projects covers a wide range of 

factors, yet in the studies reviewed, the focus has been 

primarily on safety risks, resource risks, and total float 

risks. While these are critical areas, expanding the scope of 

risk analysis to include other dimensions such as 

environmental risks, financial risks, and stakeholder-

related risks could provide a more comprehensive 

understanding of the Time-Cost-Risk trade-off. A broader 

risk perspective could lead to more robust and adaptive 

project management strategies, helping to mitigate delays 

and cost overruns more effectively. 

Comparative analyses of various optimization algorithms 

could reveal which methods are most efficient and accurate 

across diverse project scenarios. Future research should 

aim to test and evaluate a wider array of algorithms, 

enhancing their applicability to complex construction 

projects. Understanding the influence of problem 

characteristics, parameter choices, and algorithm 

implementation on performance is crucial for successfully 

applying these tools to multi-objective optimization 

problems. By addressing these gaps, construction project 

managers can gain deeper insights into the trade-offs 

between time, cost, and risk, leading to more informed and 

resilient project outcomes. 
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