Applications of Soil Geochemistry in Mineral Exploration

Authors

  • Hidayet Dönmez Berrak Mühendislik

DOI:

https://doi.org/10.5281/zenodo.10436738

Keywords:

Traditional statistical methods (exploratory data analysis), Multivariate statistics, Fractal/multifractal method, Single element halos, Multielement halos, Iso-concentration mapping, Soil geochemistry, Mineral exploration

Abstract

Soil geochemistry studies play a crucial role in mineral exploration, aiming to emphasize the significance of soil geochemistry in mining exploration and to present the most common and widely accepted methods for evaluating soil geochemical data. There are numerous reasons why soil geochemistry is an indispensable part of mineral exploration; 1) Identification of mineral/element anomalies: Soil acts as a natural filter, accumulating elements released from buried mineral deposits through weathering processes and atmospheric conditions. Examining the elemental composition of soil can indirectly reveal the presence of hidden mineral deposits. This allows geologists to identify areas with higher mineral potential for further exploration through geophysical surveys or drilling. 2) Defining the extent of a mineral deposit: After a mineral anomaly is identified, soil geochemistry aids in determining the boundaries and size of the potential deposit. Geologists can map the size of the mineralization and assess its economic viability by analyzing the spatial distribution of specific elements in the soil. 3)Understanding the type of mineralization: Analyzing specific groups of elements in the soil can provide clues about the type of underlying mineral deposit. This insight helps geologists target their exploration efforts towards specific minerals of interest and avoid wasting resources on areas with less valuable mineralization. 4) Cost-effectiveness: Compared to other research methods like drilling, soil geochemistry is a relatively inexpensive and non-invasive technique. It allows for the comprehensive coverage of large areas and quickly produces valuable data to guide subsequent exploration decisions.

In conclusion, soil geochemistry plays a vital role in the current state of mineral exploration, offering a cost-effective and informative approach to detecting mineral deposits. In this context, the importance of accurately evaluating soil geochemical data is evident. Therefore, traditional statistical methods (exploratory data analysis), multivariate statistics, and fractal/multifractal methods used in the assessment of soil geochemical data are provided in this study.

References

P. J. Gerla, M. U. Sharif, and S. F. Korom, “Geochemical processes controlling the spatial distribution of selenium in soil and water, west central South Dakota, USA,” Environmental Earth Sciences, vol. 62, no. 7, pp. 1551–1560, 2011, doi: 10.1007/s12665-010-0641-0.

M. Drewnik, M. Skiba, W. Szymański, and M. Zyła, “Mineral composition vs. soil forming processes in loess soils - A case study from Kraków (Southern Poland),” Catena, vol. 119, pp. 166–173, 2014, doi: 10.1016/j.catena.2014.02.012.

M. R. Alfaro et al., “Rare-earth-element geochemistry in soils developed in different geological settings of Cuba,” Catena, vol. 162, no. November 2017, pp. 317–324, 2018, doi: 10.1016/j.catena.2017.10.031.

A. Vural, “Evaluation of soil geochemistry data of Canca Area (Gümüşhane, Turkey) by means of Inverse Distance Weighting (IDW) and Kriging methods-preliminary findings,” Bulletin of the Mineral Research and Exploration, vol. 158, pp. 195–216, Jun. 2019, doi: 10.19111/bulletinofmre.430531.

A. Sungur, M. Soylak, E. Yilmaz, S. Yilmaz, and H. Ozcan, “Characterization of Heavy Metal Fractions in Agricultural Soils by Sequential Extraction Procedure: The Relationship Between Soil Properties and Heavy Metal Fractions,” Soil and Sediment Contamination, vol. 24, no. 1, pp. 1–15, 2015, doi: 10.1080/15320383.2014.907238.

A. Vural, “Investigation of the relationship between rare earth elements, trace elements, and major oxides in soil geochemistry,” Environmental Monitoring and Assessment, vol. 192, no. 2, p. 124, Feb. 2020, doi: 10.1007/s10661-020-8069-9.

E. J. M. Carranza, Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Elsevier, 2009.

A. Esmaeili, F. Moore, B. Keshavarzi, N. Jaafarzadeh, and M. Kermani, “A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran,” Catena, vol. 121, pp. 88–98, 2014, doi: 10.1016/j.catena.2014.05.003.

G. Shi, J. Teng, H. Ma, D. Wang, and Y. Li, “Metals in topsoil in Larsemann Hills, an ice-free area in East Antarctica: Lithological and anthropogenic inputs,” Catena, vol. 160, no. August 2017, pp. 41–49, 2018, doi: 10.1016/j.catena.2017.09.001.

A. Sungur, M. Soylak, and H. Ozcan, “Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability,” Chemical Speciation and Bioavailability, vol. 26, no. 4, pp. 219–230, 2014, doi: 10.3184/095422914X14147781158674.

F. S. Sosa-Rodríguez et al., “Spatial distribution, mobility and potential health risks of arsenic and lead concentrations in semiarid fine top-soils of Durango City, Mexico,” Catena, vol. 190, no. March, p. 104540, 2020, doi: 10.1016/j.catena.2020.104540.

H. Yilmaz, “Geochemical exploration for gold in western Turkey: Success and failure,” Journal of Geochemical Exploration, vol. 80, no. 1, pp. 117–135, 2003, doi: 10.1016/S0375-6742(03)00187-0.

R. H. Mazzucchelli, “The application of soil geochemistry to gold exploration in the black Flag Area, Yilgarn Block, Western Australia,” Journal of Geochemical Exploration, vol. 57, no. 1–3, pp. 175–185, 1996, doi: 10.1016/S0375-6742(96)00033-7.

A. W. Rose, H. Hawkes, and J. Webs, Geochemistry in Mineral Exploration, 2nd ed. Londan, England: Academic Press, 1991.

I. N. Yusta, F. Velasco, and J. M. Herrero, “Anomaly threshold estimation and data normalization using EDA stastistics: Application to lithogeochemical exploration in lower cretaceous Zn-Pb carbonate-hosted deposits, Northern Spain,” Applied Geochemistry, vol. 13, no. 4, pp. 421–439, 1998, doi: 10.1016/S0883-2927(97)00095-4.

A. Vural, “Bayramiç (Çanakkale) ve Çevresindeki Altın Zenginleşmelerinin Araştırılması,” Ankara Üniversitesi, 2006.

A. Vural and D. Aydal, “Soil geochemistry study of the listvenite area of Ayvacik (Çanakkale, Turkey),” Caspian Journal of Environmental Sciences, vol. 18, no. 3, pp. 205–215, 2020.

A. Vural, “Contamination assessment of heavy metals associated with an alteration area: Demirören Gumushane, NE Turkey,” Journal of the Geological Society of India, vol. 86, no. 2, pp. 215–222, Aug. 2015, doi: 10.1007/s12594-015-0301-9.

A. Vural and B. Çiçek, “Heavy Metal Pollution in Developed Soils on Mineralization Zone,” in 3rd International Conference on Advanced Engineering Technologies (ICADET), 2019, pp. 880–884.

A. Vural and B. Çiçek, “Cevherleşme Sahasında Gelişmiş Topraklardaki Ağır Metal Kirliliği,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, pp. 1533–1547, 2020, doi: 10.29130/dubited.643775.

G. Machender, R. Dhakate, S. T. M. Rao, B. M. Rao, and L. Prasanna, “Heavy metal contamination in sediments of Balanagar industrial area, Hyderabad, Andra Pradesh, India,” Arabian Journal of Geosciences, vol. 7, no. 2, pp. 513–525, 2014, doi: 10.1007/s12517-012-0759-3.

B. T. Sany, A. Salleh, A. H. Sulaiman, A. Mehdinia, and G. H. Monazami, “Geochemical Assessment of Heavy Metals Concentration in Surface Sediment of West,” vol. 5, no. 8, pp. 77–81, 2011.

Y. Xiong, R. Zuo, and E. J. M. Carranza, “Mapping mineral prospectivity through big data analytics and a deep learning algorithm,” Ore Geology Reviews, vol. 102, no. October, pp. 811–817, 2018, doi: 10.1016/j.oregeorev.2018.10.006.

C. Reimann, P. Filzmoser, and R. G. Garrett, “Factor analysis applied to regional geochemical data: problems and possibilities,” Applied Geochemistry, vol. 17, pp. 185–206, 2002.

C. Reimann and P. Filzmoser, “Normal and log normal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data,” Environmental Geology, vol. 39, pp. 1001–1014, 2000.

M. Sadeghi, A. Billay, and E. J. M. Carranza, “Analysis and mapping of soil geochemical anomalies: Implications for bedrock mapping and gold exploration in Giyani area, South Africa,” Journal of Geochemical Exploration, vol. 154, pp. 180–193, 2014, doi: 10.1016/j.gexplo.2014.11.018.

C. Wang et al., “Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China,” Journal of Geochemical Exploration, vol. 124, pp. 40–58, 2013.

M. Ahmadfaraj, M. Mirmohammadi, P. Afzal, A. B. Yasrebi, and E. J. Carranza, “Fractal modeling and fry analysis of the relationship between structures and Cu mineralization in Saveh region, Central Iran,” Ore Geology Reviews, vol. 107, no. January, pp. 172–185, 2019, doi: 10.1016/j.oregeorev.2019.01.026.

S. Xu, X. Hu, E. J. M. Carranza, and G. Wang, “Multi-parameter Analysis of Local Singularity Mapping and Its Application to Identify Geochemical Anomalies in the Xishan Gold Deposit, North China,” Natural Resources Research, vol. 29, no. 6, pp. 3425–3442, 2020, doi: 10.1007/s11053-020-09669-5.

S. Zhang et al., “Geochemically Constrained Prospectivity Mapping Aided by Unsupervised Cluster Analysis,” Natural Resources Research, vol. 30, no. 3, pp. 1955–1975, 2021, doi: 10.1007/s11053-021-09865-x.

R. Ghezelbash, A. Maghsoudi, and E. J. M. Carranza, “An Improved Data-Driven Multiple Criteria Decision-Making Procedure for Spatial Modeling of Mineral Prospectivity: Adaption of Prediction–Area Plot and Logistic Functions,” Natural Resources Research, vol. 28, no. 4, pp. 1299–1316, 2019, doi: 10.1007/s11053-018-9448-6.

E. J. M. Carranza, “Natural Resources Research Publications on Geochemical Anomaly and Mineral Potential Mapping, and Introduction to the Special Issue of Papers in These Fields,” Natural Resources Research, vol. 26, no. 4, pp. 379–410, 2017, doi: 10.1007/s11053-017-9348-1.

D. Skoog, D. West, F. Holler, and S. Crouch, Fundamentals of analytical chemistry, 8th ed. Belmont, CA 94002, USA: Brooks/Cole-Thomson Learning, 2004.

A. Vural, “Comparison of Threshold Values Calculated with Different Methods and Soil Geochemistry Survey Using Iso-concentration Mapping for Single Element and Multielement Halos Technique for Gold Exploration at Kısacık (Ayvacık/Çanakkale-Türkiye),” p. (under review), 2023.

A. Vural, “Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey,” Environmental Monitoring and Assessment, vol. 187, no. 8, p. 486, 2015, doi: 10.1007/s10661-015-4708-y.

A. Vural, “Relationship between the geological environment and element accumulation capacity of Helichrysum arenarium,” Arabian Journal of Geosciences, vol. 11, no. 11, p. 258, Jun. 2018, doi: 10.1007/s12517-018-3609-0.

A. Vural, “Güneyköy ve Çevresi (Eşme-Uşak) Arsenopirit Cevherleşmelerinin Maden Jeolojisi,” Ankara Üniversitesi, 1998.

A. Vural and T. Ünlü, “The geology and mineralogical/petrographic features of Umurbabadağ and its surroundings (Eşme, Uşak - Turkey ),” Journal of Engineering Research and Applied Science, vol. 9, no. 2, pp. 1561–1587, 2020.

G. Külekçi and A. Vural, “Analysis and Classification of Water Occuring Naturally in a Metallic Underground Mine,” in International Halich Congress, 2021, pp. 308–316.

M. S. Meigoony, P. Afzal, M. Gholinejad, A. B. Yasrebi, and B. Sadeghi, “Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran,” Arabian Journal of Geosciences, vol. 7, no. 12, pp. 5333–5343, 2014, doi: 10.1007/s12517-013-1074-3.

Z. Wang, O. Erten, Y. Zhou, J. Chen, F. Xiao, and W. Hou, “A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China,” Journal of Geochemical Exploration, vol. 189, pp. 122–137, 2017, doi: 10.1016/j.gexplo.2017.03.017.

A. Nazarpour, N. R. Omran, G. R. Paydar, B. Sadeghi, F. Matroud, and A. M. Nejad, “Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran,” Chemie der Erde, vol. 75, no. 1, pp. 117–132, 2015, doi: 10.1016/j.chemer.2014.11.002.

F. P. Agterberg, “Multifractals and geostatistics,” Journal of Geochemical Exploration, vol. 122, pp. 113–122, 2012, doi: 10.1016/j.gexplo.2012.04.001.

P. Afzal, M. E. Tehrani, M. Ghaderi, and M. R. Hosseini, “Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran,” Journal of Geochemical Exploration, vol. 161, pp. 119–127, 2016, doi: 10.1016/j.gexplo.2015.12.001.

E. J. M. Carranza, E. A. Owusu, and M. Hale, “Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana,” Mineralium Deposita, vol. 44, no. 8, pp. 915–938, 2009, doi: 10.1007/s00126-009-0250-6.

E. J. M. Carranza and M. Sadeghi, “Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden),” Ore Geology Reviews, vol. 38, no. 3, pp. 219–241, 2010, doi: 10.1016/j.oregeorev.2010.02.003.

H. Yilmaz, F. N. Sonmez, and E. J. M. Carranza, “Discovery of Au-Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey,” Journal of Geochemical Exploration, vol. 158, no. July, pp. 55–73, 2015, doi: 10.1016/j.gexplo.2015.07.003.

J. Aitchison, The Statistical Analysis of Compositional Data. London: Chapman and Hall, 1986.

P. Filzmoser and K. Hron, “Outlier detection for compositional data using robust methods,” Mathematical Geosciences, vol. 40, no. 3, pp. 233–248, 2008, doi: 10.1007/s11004-007-9141-5.

A. J. Sinclair, “Selection of threshold values in geochemical data using probability graphs,” Journal of Geochemical Exploration, vol. 3, p. 129_149, 1974.

C. Reimann, P. Filzmoser, and R. Garrett, “Background and threshold: critical comparison of methods of determination,” Science of the Total Environment, vol. 346, pp. 1–16, 2005.

Y. Teng, S. Ni, J. Wang, R. Zuo, and J. Yang, “A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China,” Journal of Geochemical Exploration, vol. 104, no. 3, pp. 118–127, 2010, doi: 10.1016/j.gexplo.2010.01.006.

A. Vural, “Gold and Silver Content of Plant Helichrysum Arenarium, Popularly Known as the Golden Flower, Growing in Gümüşhane, NE Turkey,” Acta Physica Polonica A, vol. 132, no. 3–II, pp. 978–980, Sep. 2017, doi: 10.12693/APhysPolA.132.978.

F. R. Hampel, “The Influence Curve and its Role in Robust Estimation,” Journal of the American Statistical Association, vol. 69, no. 346, pp. 383–393, Jun. 1974, doi: 10.1080/01621459.1974.10482962.

B. B. Mandelbrot, The Fractal Geometry of Nature (Updated and Augmented Edition). San Francisco, CA.: W.H. Freeman, 1983.

S. Hassanpour and P. Afzal, “Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran,” Arabian Journal of Geosciences, vol. 6, no. 3, pp. 957–970, Mar. 2013, doi: 10.1007/s12517-011-0396-2.

Q. Cheng, F. P. Agterberg, and S. B. Ballantyne, “The separation of geochemical anomalies from background by fractal methods,” Journal of Geochemical Exploration, vol. 51, no. 2, pp. 109–130, Jul. 1994, doi: 10.1016/0375-6742(94)90013-2.

C. Li, T. Ma, and J. Shi, “Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background,” Journal of Geochemical Exploration, vol. 77, no. 2–3, pp. 167–175, Mar. 2003, doi: 10.1016/S0375-6742(02)00276-5.

P. Afzal, Y. F. Alghalandis, P. Moarefvand, N. R. Omran, and H. A. Haroni, “Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran,” Journal of Geochemical Exploration, vol. 112, pp. 131–138, Jan. 2012, doi: 10.1016/j.gexplo.2011.08.002.

A. P. Reis, A. J. Sousa, and E. Cardoso Fonseca, “Soil geochemical prospecting for gold at Marrancos (Northern Portugual),” Journal of Geochemical Exploration, vol. 73, no. 1, pp. 1–10, 2001, doi: 10.1016/S0375-6742(01)00169-8.

E. J. M. Carranza and M. Hale, “Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines,” Exploration and Mining Geology, vol. 10, no. 3, pp. 165–175, 2001, doi: 10.1016/S0169-1368(02)00111-7.

A. Vural, “Assessment of metal pollution associated with an alteration area: Old Gümüşhane, NE Black Sea,” Environmental Science and Pollution Research, vol. 22, no. 5, pp. 3219–3228, 2015, doi: 10.1007/s11356-014-2907-7.

A. Vural, “Assessment of Sessile Oak (Quercus petraea L.) Leaf as Bioindicator for Exploration Geochemistry,” Acta Physica Polonica A, vol. 130, no. 1, pp. 191–193, Jul. 2016, doi: 10.12693/APhysPolA.130.191.

P. Afzal, R. Ghasempour, A. R. Mokhtari, and H. A. Haroni, “Application of Concentration-Number and Concentration-Volume Fractal Models to Recognize Mineralized Zones in North Anomaly Iron Ore Deposit, Central Iran,” Archives of Mining Sciences, vol. 60, no. 3, pp. 777–789, 2015, doi: 10.1515/amsc-2015-0051.

A. Vural, “Canca (Gümüşhane, Türkiye) toprak jeokimyası verilerinin Ters Mesafe Ağırlıklandırma (TMA) ve Krigleme enterpolasyon metotlarıyla değerlendirilmesi-ilk bulgular,” MTA Dergisi, vol. 158, pp. 197–219, 2019.

A. Vural and M. Erdoğan, “Eski Gümüşhane Kırkpavli Alterasyon Sahasında Toprak Jeokimyası,” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 1, pp. 1–15, 2014.

A. . Macheyei, X. Li, D. P. Kafumu, and F. Yuan, Applied Geochemistry Advances in Mineral Exploration Techniques. Amsterdam: Elsevier B.V., 2020.

U. Divrikli, N. Horzum, M. Soylak, and L. Elci, “Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey,” International Journal of Food Science and Technology, vol. 41, no. 6, pp. 712–716, 2006, doi: 10.1111/j.1365-2621.2005.01140.x.

M. M. Karada, F. Arik, and A. Öztürk, “Çatmakaya (Seydişehir-Türkiye ) boksit yatağının kökenine jeoistatistiksel ve jeokimyasal bir yaklaşım,” Distribution, vol. 27, no. 2, pp. 63–85, 2006.

A. Sungur, M. Soylak, and H. Özcan, “Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey,” Environmental Earth Sciences, vol. 75, no. 4, pp. 1–11, 2016, doi: 10.1007/s12665-016-5268-3.

A. Sungur, A. Vural, A. Gundogdu, and M. Soylak, “Effect of antimonite mineralization area on heavy metal contents and geochemical fractions of agricultural soils in Gümüşhane Province, Turkey,” Catena, vol. 184, no. January 2019, p. 104255, 2020, doi: 10.1016/j.catena.2019.104255.

E. J. M. Carranza, “Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features,” Ore Geology Reviews, vol. 35, no. 3–4, pp. 383–400, 2009, doi: 10.1016/j.oregeorev.2009.01.001.

R. Zuo, J. Wang, G. Chen, and M. Yang, “Identification of weak anomalies: A multifractal perspective,” Journal of Geochemical Exploration, vol. 148, pp. 12–24, 2015, doi: 10.1016/j.gexplo.2014.05.005.

R. Zuo and J. Wang, “Fractal/multifractal modeling of geochemical data: A review,” Journal of Geochemical Exploration, 2015, doi: 10.1016/j.gexplo.2015.04.010.

F. Arik and T. Yaldiz, “Heavy metal determination and pollution of the soil and plants of southeast Tavşanli (Kütahya, Turkey),” Clean - Soil, Air, Water, vol. 38, no. 11, pp. 1017–1030, 2010, doi: 10.1002/clen.201000131.

Downloads

Published

2023-12-27

How to Cite

Dönmez, H. (2023). Applications of Soil Geochemistry in Mineral Exploration. ISERDAR, 1(1), 12–18. https://doi.org/10.5281/zenodo.10436738

Issue

Section

Articles