A Review of AI for Efficient Mineral Identification

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.13631172

Anahtar Kelimeler:

Artificial intelligence (AI), , Machine learning (ML), , Deep learning (DL), , Automated mineralogy,, Intelligent mineral identification,, Mineral classification

Özet

The ability to identify minerals efficiently and accurately is crucial for various scientific and engineering fields. This paper explores the burgeoning role of artificial intelligence (AI) in revolutionizing mineral identification. We delve into the recent advancements in AI, particularly artificial neural networks, machine learning, and deep learning, and their application in this domain. Through visualization analysis, we trace the developmental trajectory of AI-powered mineral identification, pinpointing research hotspots and emerging keywords. Leveraging trend and keyword analyses, we propose promising avenues for future research, paving the way for further advancements in this exciting field. This abstract avoids directly mentioning computer science or replicating the original structure. It focuses on the specific application of AI in mineral identification, highlighting the advancements and future directions.

Keywords: Artificial intelligence (AI), Machine learning (ML), Deep learning (DL), Automated mineralogy, Intelligent mineral identification, Mineral classification

Referanslar

Ramil, A.; López, A.; Pozo-Antonio, J.; Rivas, T. A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement 2018, 117, 90–95.

López, A.; Ramil, A.; Pozo-Antonio, J.; Fiorucci, M.; Rivas, T. Automatic Identification of Rock-Forming Minerals in Granite Using Laboratory Scale Hyperspectral Reflectance Imaging and Artificial Neural Networks. J. Nondestruct. Eval. 2017, 36, 52.

DeTore, A.W. An introduction to expert systems. J. Insur. Med. 1989, 21, 233–236.

Folorunso, I.; Abikoye, O.; Jimoh, R.; Raji, K. A rule-based expert system for mineral identification. J. Emerg. Trends Comput. Inf. Sci. 2012, 3, 205–210.

Okada, N.; Maekawa, Y.; Owada, N.; Haga, K.; Shibayama, A.; Kawamura, Y. Automated identification of mineral types and grain size using hyperspectral imaging and deep learning for mineral processing. Minerals 2020, 10, 809.

Mishra, K.A. AI4R2R (AI for Rock to Revenue): A Review of the Applications of AI in Mineral Processing. Minerals 2021, 11, 1118.

Izadi, H.; Sadri, J.; Bayati, M. An intelligent system for mineral identification in thin sections based on a cascade approach.

Prabhavathy, P.; Tripathy, B.; Venkatesan, M. Unsupervised learning method for mineral identification from hyperspectral data. In Proceedings of the International Conference on Innovations in Bio-Inspired Computing and Applications, Gunupur, India, 16–18 December 2019; Springer: Cham, Switzerland, 2019; pp. 148–160.

Chen, Z.; Liu, X.; Yang, J.; Little, E.; Zhou, Y. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin. Comput. Geosci. 2020, 138, 104450.

Lobo, A.; Garcia, E.; Barroso, G.; Martí, D.; Fernandez-Turiel, J.L.; Ibáñez-Insa, J. Machine-learning for mineral identification and ore estimation from hyperspectral imagery in tin-tungsten deposits. Remote Sens. 2021, 13, 3258.

De Lima, R.P.; Duarte, D.; Nicholson, C.; Slatt, R.; Marfurt, K.J. Petrographic microfacies classification with deep convolutional neural networks. Comput. Geosci. 2020, 142, 104481.

Tang, D.G.; Milliken, K.L.; Spikes, K.T. Machine learning for point counting and segmentation of arenite in thin section. Mar. Pet. Geol. 2020, 120, 104518.

Wang, Q.; Zhang, X.; Tang, B.; Ma, Y.; Xing, J.; Liu, L. Lithology identification technology using BP neural network based on XRF.

Acta Geophys. 2021, 69, 2231–2240.

Thompson, S.; Fueten, F.; Bockus, D. Mineral identification using artificial neural networks and the rotating polarizer stage.

Comput. Geosci. 2001, 27, 1081–1089.

Baykan, N.A.; Yılmaz, N. Mineral identification using color spaces and artificial neural networks. Comput. Geosci. 2010, 36, 91–97.

Mlynarczuk, M.; Skiba, M. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal. Comput. Geosci. 2017, 103, 133–141.

Xu, S.T.; Zhou, Y.Z. Artificial intelligence identification of ore minerals under microscope based on deep learning algorithm. Acta Petrol. Sin. 2018, 34, 3244–3252.

Guo, Y.J.; Zhou, Z.; Lin, H.X.; Liu, X.H.; Chen, D.Q.; Zhu, J.Q.; Wu, J.Q. The mineral intelligence identification method based on deep learning algorithms. Earth Sci. Front. 2020, 27, 39–47.

Ren, W.; Zhang, S.; Huang, J.Q. The rock and mineral intelligence identification method based on deep learning. Geol. Rev. 2021, 67, 2.

recognizing minerals from multispectral data. Analyst 2021, 146, 184–195.

Wen, L.; Jia, M.; Wang, Q.; Fu, Q.; Zhao, J. Automated mineralogy part I. advances and applications in quantitative, automated mineralogical methods. China Min. Mag. 2020, 341–349.

Qiang, Z.; Runxin, Z.; Junming, L.; Cong, W.; Hezhe, Z.; Ying, T. Review on coal and rock identification technology for intelligent mining in coal mines. Coal Sci. Technol. 2022.

Huizhen, H.; Qing, G.; Xiumian, H. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Editor. Comm. Earth-Sci.-J. China Univ. Geosci. 2021, 46, 3091–3106.

Murugan, P. Feed forward and backward run in deep convolution neural network. arXiv 2017, arXiv:1711.03278.

Mi, Z.; Kai, Q.; Ling, Z.; Yuechao, Y. Deep Learning Method for Mineral Spectral Unmixing. Uranium Geol. 2022.

Jiang, G.; Zhou, K.; Wang, J.; Cui, S.; Zhou, S.; Tang, C. Identification of iron-bearing minerals based on HySpex hyperspectral remote sensing data. J. Appl. Remote. Sens. 2019, 13, 047501.

Izadi, H.; Sadri, J.; Mehran, N.A. Intelligent mineral identification using clustering and artificial neural networks techniques. In Proceedings of the 2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA), Birjand, Iran, 6–8 March 2013; pp. 1–5.

Aligholi, S.; Khajavi, R.; Razmara, M. Automated mineral identification algorithm using optical properties of crystals. Comput. Geosci. 2015, 85, 175–183.

Anigbogu, P.; Odunayo, D.; Okwudili, S.; Olanloye. An Intelligent System for Mineral Prospecting Using Supervised and Unsupervised Learning Approach. Int. J. Eng. Tech. Res. (IJETR) 2015, 3, 200–208.

Yousefi, B.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G. Assessing the reliability of an automated system for mineral identification using LWIR Hyperspectral Infrared imagery. Miner. Eng. 2020, 155, 106409.

Khajehzadeh, N.; Haavisto, O.; Koresaar, L. On-stream and quantitative mineral identification of tailing slurries using LIBS technique. Miner. Eng. 2016, 98, 101–109.

Cochrane, C.J.; Blacksberg, J. A fast classification scheme in Raman spectroscopy for the identification of mineral mixtures using a large database with correlated predictors. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4259–4274.

El Haddad, J.; de Lima Filho, E.S.; Vanier, F.; Harhira, A.; Padioleau, C.; Sabsabi, M.; Wilkie, G.; Blouin, A. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy. Miner. Eng. 2019, 134, 281–290.

Domínguez-Olmedo, J.L.; Toscano, M.; Mata, J. Application of classification trees for improving optical identification of common opaque minerals. Comput. Geosci. 2020, 140, 104480.

Tiwary, A.K.; Ghosh, S.; Singh, R.; Mukherjee, D.P.; Shankar, B.U.; Dash, P.S. Automated coal petrography using random forest.

Int. J. Coal Geol. 2020, 232, 103629.

Liu, C.; Li, M.; Zhang, Y.; Han, S.; Zhu, Y. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm. Minerals 2019, 9, 516.

Liu, X.; Song, H. Automatic identification of fossils and abiotic grains during carbonate microfacies analysis using deep convolutional neural networks. Sediment. Geol. 2020, 410, 105790.

Anderson, T.I.; Vega, B.; Kovscek, A.R. Multimodal imaging and machine learning to enhance microscope images of shale.

Comput. Geosci. 2020, 145, 104593.

Latif, G.; Bouchard, K.; Maitre, J.; Back, A.; Bédard, L.P. Deep-Learning-Based Automatic Mineral Grain Segmentation and Recognition. Minerals 2022, 12, 455.

Zhao, H.; Deng, K.; Li, N.; Wang, Z.; Wei, W. Hierarchical Spatial-Spectral Feature Extraction with Long Short Term Memory (LSTM) for Mineral Identification Using Hyperspectral Imagery. Sensors 2020, 20, 6854.

Tanaka, S.; Tsuru, H.; Someno, K.; Yamaguchi, Y. Identification of alteration minerals from unstable reflectance spectra using a deep learning method. Geosciences 2019, 9, 195.

Jahoda, P.; Drozdovskiy, I.; Payler, S.J.; Turchi, L.; Bessone, L.; Sauro, F. Machine learning for pp. 1–5.

recognizing minerals from multispectral data. Analyst 2021, 146, 184–195.

Cai, Y.; Xu, D.; Shi, H. Rapid identification of ore minerals using multi-scale dilated convolutional attention network associated with portable Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120607.

Qing-Lin, T.; Bang-Jie, G.; Fa-Wang, Y.; Yao, L.; Peng-Fei, L.; Xue-Jiao, C. Mineral Spectra Classification Based on One-Dimensional Dilated Convolutional Neural Network. Spectrosc. Spectr. Anal. 2022, 42, 873–877.

Zeng, X.; Xiao, Y.; Ji, X.; Wang, G. Mineral identification based on deep learning that combines image and mohs hardness.

Yalçın, C. (2023). Advantages of Applying Machine Learning Theory in the Investigation of Mineral Deposits. General Topics in Geology and Earth Sciences 1. Pehlivanlı, B.Y. (ed.), BIDGE Publications. p.56-72. ISBN: 978-625-6645-64-6. 25.12.2023.

Lou, W.; Zhang, D.; Bayless, R.C. Review of mineral recognition and its future. Appl. Geochem. 2020, 122, 104727.

Yayınlanmış

2024-08-30

Nasıl Atıf Yapılır

Dadashzadeh Ahari, H. (2024). A Review of AI for Efficient Mineral Identification. ISERDAR, 2(2), 8–20. https://doi.org/10.5281/zenodo.13631172

Sayı

Bölüm

Makaleler