Breakdown of amphibole in disequilibrium conditions: An experimental approach

Mineralogy

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.14513898

Anahtar Kelimeler:

Breakdown, amphibole, pyroxene, disequilibrium, geothermometry, geobarometry

Özet

Evidences of amphibole and biotite breakdown can be seen in some volcanic rocks of the Tertiary and quaternary periods of Iran. This paper, investigates the breakdown of amphiboles in disequilibrium conditions. By investigation andesites of Quaternary pyroxenes northeast of Warzghan in northwest Iran, we obtained the combined temperature-pressure conditions of the amphibole crystals. Geothermometry and geobarometry based on amphibole single-phase compositions indicate that most of the amphibole crystals are not in equilibrium with hydrous melts containing ~64-69 wt% SiO2. In the pyroxene andesites of the region, some amphiboles have been breakdown. Investigations showed that the arrival of new and hot magma pulse caused the magma cell to migrate from deep levels (22.5 km depth and 7.5 kbar pressure) to shallower depths (21 km depth and 7 kbar pressure). This increase in temperature and decrease in pressure destroyed the stability conditions of amphibole and created the conditions for the growth of augite.

Referanslar

Allen, J. C., & Boettcher, A. L. (1983). The stability of amphibole in andesite and basalt at high pressures. American Mineralogist, 68(3-4), 307-314.

Bailey, D.K., (1969): The stability of acmite in the presence of H20. Am. J. Sci., Schairer, 267(A), 1-16.

Bonechi, B., Perinelli, C., Gaeta, M., Tecchiato, V., & Fabbrizio, A. (2020). Amphibole growth from a primitive alkaline basalt at 0.8 GPa: Time-dependent compositional evolution, growth rate and competition with clinopyroxene. Lithos, 354, 105272.

Dabiri, R., Akbari-Mogaddam, M., & Ghaffari, M. (2018). Geochemical evolution and petrogenesis of the eocene Kashmar granitoid rocks, NE Iran: implications for fractional crystallization and crustal contamination processes. Iranian Journal of Earth Sciences, 10(1), 68-77.

Davidson, J., Turner, S., Handley, H., Macpherson, C. Dosseto, A. (2007): Amphibole. "sponge" in arc crust? Geology, 35(9), 787-790.

Deer, W. A., Howie, R. A., & Zussman, J. (Eds.). (1997). Rock-forming minerals: disilicates and ring silicates, volume 1B. Geological Society of London.

D'Mello, N. G., Zellmer, G. F., Negrini, M., Kereszturi, G., Procter, J., Stewart, R., ... & Iizuka, Y. (2021). Deciphering magma storage and ascent processes of Taranaki, New Zealand, from the complexity of amphibole breakdown textures. Lithos, 398, 106264.

Ghasempour, M. R., Mehdipour Ghazi, J., Biabangard, H., & Dabiri, R. (2014). Petrogenetic Evolution of Plio-Quaternary Mafic Lavas in Nehbandan (East Iran). Iranian Journal of Earth Sciences, 6(2), 133-141.

Hammarstrom, J. M., & Zen, E. A. (1986). Aluminum in hornblende: an empirical igneous geobarometer. American mineralogist, 71(11-12), 1297-1313.

Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to mineralogy and petrology, 116, 433-447.

Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H., & Sisson, V. B. (1987). Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American mineralogist, 72(3-4), 231-239.

Johnson, M. C., & Rutherford, M. J. (1989). Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9), 837-841.

Juriček, M. P., & Keppler, H. (2023). Amphibole stability, water storage in the mantle, and the nature of the lithosphere-asthenosphere boundary. Earth and Planetary Science Letters, 608, 118082.

Maksimov, A.P., (2000): The Water Influence on the Temperature of the Amphibole Stability in the Melts, Experiment in Geosciences, 9 (1), 41–42.

Maksimov, A.P., (2009): The water influence on the temperature of the amphibole stability in the melts , . Journal of Volcanology and Seimologym 3 (1), 27-33.

Niida, K., & Green, D. H. (1999). Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135(1), 18-40.

Ousta, S., Ashja-Ardalan, A., Yazdi, A., Dabiri, R., & Arian, M. A. (2024). Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam: Constraints on the development of active continental margin. Geopersia, 14(1), 89-111.

Putirka, K.D. (2008) Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69, 61-120.

Ridolfi, F., Renzulli, A., & Puerini, M. (2009). The feeding system of calc-alkaline volcanoes as inferred from new amphibole-thermobarometric formulations: reconciling petrological and geophysical evidence.

Rutherford, M. J., & Hill, P. M. (1993). Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98(B11), 19667-19685.

Sabzehi, M (2005): Breakdown of amphiboles and biotites in magmas and its petrological significance, The 24th Earth Sciences Conference, Tehran, Iran.

Sajeev, K., Windley, B. F., Connolly, J. A. D., & Kon, Y. (2009). Retrogressed eclogite (20 kbar, 1020 C) from the Neoproterozoic Palghat–Cauvery suture zone, southern India. Precambrian Research, 171(1-4), 23-36.

Schmidt, M.W., (1992): Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol, 110, 304-310.

Schorn, S., Rogowitz, A., & Hauzenberger, C. A. (2023). Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria). European Journal of Mineralogy, 35(5), 715-735.

Tracy R. J., Frost, B. R. (1991). Phase equilibria and thermobarometry of calcareous, ultramafic and mafic rocks.

Wallace, P., De Angelis, S. H., Larsen, J., Caricchi, L., & Lavallée, Y. (2024). Amphibole breakdown rim textures as archivists of pre-eruptive magmatic processes (No. EGU24-16546). Copernicus Meetings.

Yayınlanmış

2024-12-20

Nasıl Atıf Yapılır

Dabiri, R., Yazdi, A., Ashrafi, N., Moslempour, M. E., Shiaian, K., Arjmandzadeh, R., & Vural, A. (2024). Breakdown of amphibole in disequilibrium conditions: An experimental approach: Mineralogy. ISERDAR, 2(3), 30–34. https://doi.org/10.5281/zenodo.14513898

Sayı

Bölüm

Makaleler